Fan Jean
Department of Chemistry and Chemical Biology, Harvard University, Boston, MA, USA.
Methods Mol Biol. 2019;1935:97-114. doi: 10.1007/978-1-4939-9057-3_7.
Integrating prior knowledge of pathway-level information can enhance power and facilitate interpretation of gene expression data analyses. Here, we provide a practical demonstration of the value of gene set or pathway enrichment testing and extend such techniques to identify and characterize transcriptional subpopulations from single-cell RNA-sequencing data using pathway and gene set overdispersion analysis (PAGODA).
整合通路水平信息的先验知识可以提高功效并促进基因表达数据分析的解释。在这里,我们提供了基因集或通路富集测试价值的实际演示,并扩展了此类技术,以使用通路和基因集过度分散分析(PAGODA)从单细胞RNA测序数据中识别和表征转录亚群。