文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无参考细胞类型分解多细胞像素分辨率空间分辨转录组学数据。

Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data.

机构信息

Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21211, United States.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States.

出版信息

Nat Commun. 2022 Apr 29;13(1):2339. doi: 10.1038/s41467-022-30033-z.


DOI:10.1038/s41467-022-30033-z
PMID:35487922
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9055051/
Abstract

Recent technological advancements have enabled spatially resolved transcriptomic profiling but at multi-cellular pixel resolution, thereby hindering the identification of cell-type-specific spatial patterns and gene expression variation. To address this challenge, we develop STdeconvolve as a reference-free approach to deconvolve underlying cell types comprising such multi-cellular pixel resolution spatial transcriptomics (ST) datasets. Using simulated as well as real ST datasets from diverse spatial transcriptomics technologies comprising a variety of spatial resolutions such as Spatial Transcriptomics, 10X Visium, DBiT-seq, and Slide-seq, we show that STdeconvolve can effectively recover cell-type transcriptional profiles and their proportional representation within pixels without reliance on external single-cell transcriptomics references. STdeconvolve provides comparable performance to existing reference-based methods when suitable single-cell references are available, as well as potentially superior performance when suitable single-cell references are not available. STdeconvolve is available as an open-source R software package with the source code available at https://github.com/JEFworks-Lab/STdeconvolve .

摘要

最近的技术进步使得能够进行空间分辨转录组分析,但在多细胞像素分辨率下,这阻碍了细胞类型特异性空间模式和基因表达变化的识别。为了解决这一挑战,我们开发了 STdeconvolve,这是一种无参考的方法,可以对包含这种多细胞像素分辨率空间转录组学(ST)数据集的底层细胞类型进行去卷积。我们使用模拟和真实的 ST 数据集,这些数据集来自各种空间转录组学技术,包括各种空间分辨率,如 Spatial Transcriptomics、10X Visium、DBiT-seq 和 Slide-seq,我们表明 STdeconvolve 可以有效地恢复细胞类型的转录谱及其在像素中的比例表示,而无需依赖外部单细胞转录组学参考。当有合适的单细胞参考时,STdeconvolve 提供与现有基于参考的方法相当的性能,而当没有合适的单细胞参考时,它可能具有更好的性能。STdeconvolve 是一个开源的 R 软件包,可以在 https://github.com/JEFworks-Lab/STdeconvolve 上获得源代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/f8c7f0b809b1/41467_2022_30033_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/8db6d8c0b094/41467_2022_30033_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/8bf4e83ed490/41467_2022_30033_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/dfa7e4fdf044/41467_2022_30033_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/bb2e18b26aa5/41467_2022_30033_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/f8c7f0b809b1/41467_2022_30033_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/8db6d8c0b094/41467_2022_30033_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/8bf4e83ed490/41467_2022_30033_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/dfa7e4fdf044/41467_2022_30033_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/bb2e18b26aa5/41467_2022_30033_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/9055051/f8c7f0b809b1/41467_2022_30033_Fig5_HTML.jpg

相似文献

[1]
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data.

Nat Commun. 2022-4-29

[2]
SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.

J Comput Biol. 2024-9

[3]
ScType enables fast and accurate cell type identification from spatial transcriptomics data.

Bioinformatics. 2024-7-1

[4]
RETROFIT: Reference-free deconvolution of cell-type mixtures in spatial transcriptomics.

bioRxiv. 2023-6-9

[5]
SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.

Bioinformatics. 2022-10-31

[6]
stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics.

Bioinformatics. 2023-10-3

[7]
Computational solutions for spatial transcriptomics.

Comput Struct Biotechnol J. 2022-9-1

[8]
Uncover spatially informed variations for single-cell spatial transcriptomics with STew.

Bioinform Adv. 2024-5-29

[9]
stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics.

Bioinformatics. 2021-7-12

[10]
Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology.

bioRxiv. 2023-12-18

引用本文的文献

[1]
SpaVGN: A hybrid deep learning framework for high-resolution spatial transcriptomics data reconstruction and spatial domain identification.

PLoS One. 2025-8-14

[2]
Interferon signaling modulates Down syndrome-associated Alzheimer's disease pathology in a mouse model.

iScience. 2025-7-16

[3]
Aging affects reprogramming of pulmonary capillary endothelial cells after lung injury in male mice.

Nat Commun. 2025-8-6

[4]
Spatial pattern enhanced cellular and tissue recognition for spatial transcriptomics.

NAR Genom Bioinform. 2025-7-31

[5]
A Meta-Review of Spatial Transcriptomics Analysis Software.

Cells. 2025-7-10

[6]
Spatial-scERA: a method for reconstructing spatial single-cell enhancer activity in multicellular organisms.

Nucleic Acids Res. 2025-7-19

[7]
Muscle Spatial Transcriptomic Reveals Heterogeneous Profiles in Juvenile Dermatomyositis and Persistence of Abnormal Signature After Remission.

Cells. 2025-6-19

[8]
Deciphering Cell Type Abundance in Proteomics Data Through Graph Neural Networks.

Adv Sci (Weinh). 2025-6-20

[9]
A Robust Kernel-Based Workflow for Niche Trajectory Analysis.

Small Methods. 2025-5

[10]
Advances in spatial transcriptomics and its application in the musculoskeletal system.

Bone Res. 2025-5-16

本文引用的文献

[1]
A multimodal cell census and atlas of the mammalian primary motor cortex.

Nature. 2021-10

[2]
Spatial transcriptomics at subspot resolution with BayesSpace.

Nat Biotechnol. 2021-11

[3]
SpatialDWLS: accurate deconvolution of spatial transcriptomic data.

Genome Biol. 2021-5-10

[4]
Robust decomposition of cell type mixtures in spatial transcriptomics.

Nat Biotechnol. 2022-4

[5]
SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes.

Nucleic Acids Res. 2021-5-21

[6]
Spatially resolved single-cell genomics and transcriptomics by imaging.

Nat Methods. 2021-1

[7]
Spatially resolved transcriptomics adds a new dimension to genomics.

Nat Methods. 2021-1

[8]
Aging-Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing.

Cell Rep. 2020-12-29

[9]
High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue.

Cell. 2020-12-10

[10]
Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer.

Sci Rep. 2020-11-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索