Suppr超能文献

囊性纤维化患者最大有氧运动的心肺反应。

Cardiopulmonary responses to maximal aerobic exercise in patients with cystic fibrosis.

机构信息

Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, United Kingdom.

Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, United Kingdom.

出版信息

PLoS One. 2019 Feb 13;14(2):e0211219. doi: 10.1371/journal.pone.0211219. eCollection 2019.

Abstract

Cystic fibrosis (CF) is a debilitating chronic condition, which requires complex and expensive disease management. Exercise has now been recognised as a critical factor in improving health and quality of life in patients with CF. Hence, cardiopulmonary exercise testing (CPET) is used to determine aerobic fitness of young patients as part of the clinical management of CF. However, at present there is a lack of conclusive evidence for one limiting system of aerobic fitness for CF patients at individual patient level. Here, we perform detailed data analysis that allows us to identify important systems-level factors that affect aerobic fitness. We use patients' data and principal component analysis to confirm the dependence of CPET performance on variables associated with ventilation and metabolic rates of oxygen consumption. We find that the time at which participants cross the gas exchange threshold (GET) is well correlated with their overall performance. Furthermore, we propose a predictive modelling framework that captures the relationship between ventilatory dynamics, lung capacity and function and performance in CPET within a group of children and adolescents with CF. Specifically, we show that using Gaussian processes (GP) we can predict GET at the individual patient level with reasonable accuracy given the small sample size of the available group of patients. We conclude by presenting an example and future perspectives for improving and extending the proposed framework. The modelling and analysis have the potential to pave the way to designing personalised exercise programmes that are tailored to specific individual needs relative to patient's treatment therapies.

摘要

囊性纤维化 (CF) 是一种使人衰弱的慢性疾病,需要复杂和昂贵的疾病管理。运动现已被认为是改善 CF 患者健康和生活质量的关键因素。因此,心肺运动测试 (CPET) 被用于确定年轻患者的有氧健身水平,作为 CF 临床管理的一部分。然而,目前在个体患者层面上,对于 CF 患者的有氧健身的单一限制系统还没有确凿的证据。在这里,我们进行了详细的数据分析,使我们能够确定影响有氧健身的重要系统水平因素。我们使用患者数据和主成分分析来确认 CPET 性能与与通气和耗氧量代谢率相关的变量有关。我们发现,参与者穿过气体交换阈值 (GET) 的时间与他们的整体表现高度相关。此外,我们提出了一个预测建模框架,该框架在一组患有 CF 的儿童和青少年中捕获了通气动力学、肺容量和功能与 CPET 性能之间的关系。具体来说,我们表明,使用高斯过程 (GP),我们可以在给定可用患者组的小样本量的情况下,以合理的精度预测个体患者的 GET。最后,我们提出了一个示例和改进和扩展所提出框架的未来展望。该建模和分析有可能为设计个性化运动计划铺平道路,这些计划可根据患者的治疗方案量身定制特定的个体需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验