Suppr超能文献

通过快速溶剂交换实现聚合物共混物和纳米颗粒的自组装

Self-Assembly of Polymer Blends and Nanoparticles through Rapid Solvent Exchange.

作者信息

Li Nannan, Nikoubashman Arash, Panagiotopoulos Athanassios Z

机构信息

Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , United States.

Institute of Physics , Johannes Gutenberg University Mainz , Staudingerweg 7 , Mainz 55128 , Germany.

出版信息

Langmuir. 2019 Mar 12;35(10):3780-3789. doi: 10.1021/acs.langmuir.8b04197. Epub 2019 Feb 25.

Abstract

Molecular dynamics simulations were performed to study the fabrication of polymeric colloids containing inorganic nanoparticles (NPs) via the flash nanoprecipitation (FNP) technique. During this process, a binary polymer blend, initially in a good solvent for the polymers, is rapidly mixed with NPs and a poor solvent for the polymers that is miscible with the good solvent. The simulations reveal that the polymers formed Janus particles with NPs distributed either on the surface of the aggregates, throughout their interior, or aligned at the interface between the two polymer domains, depending on the NP-polymer and NP-solvent interactions. The loading and surface density of NPs can be controlled by the polymer feed concentration, the NP feed concentration, and their ratio in the feed streams. Selective localization of NPs by incorporating electrostatic interactions between polymers and NPs has also been investigated, and was shown to be an effective way to enhance NP loading and surface density as compared to the case with only van der Waals attractions. This work demonstrates that the FNP process is promising for the production of structured and hybrid nanocolloids in a continuous and scalable way, with independent control over particle properties such as size, NP location, loading, and surface density. Our results provide useful guidelines for experimental fabrication of such hybrid nanoparticles.

摘要

进行了分子动力学模拟,以研究通过快速纳米沉淀(FNP)技术制备含有无机纳米颗粒(NPs)的聚合物胶体。在此过程中,一种二元聚合物共混物(最初处于聚合物的良溶剂中)与NPs以及与该良溶剂可混溶的聚合物的不良溶剂迅速混合。模拟结果表明,聚合物形成了Janus颗粒,NPs根据NP与聚合物以及NP与溶剂之间的相互作用,分布在聚集体表面、整个内部或两个聚合物域之间的界面处。NPs的负载量和表面密度可以通过聚合物进料浓度、NP进料浓度及其在进料流中的比例来控制。还研究了通过引入聚合物与NP之间的静电相互作用来实现NP的选择性定位,结果表明,与仅存在范德华引力的情况相比,这是提高NP负载量和表面密度的有效方法。这项工作表明,FNP工艺有望以连续且可扩展的方式生产结构化和杂化纳米胶体,并能独立控制颗粒性质,如尺寸、NP位置、负载量和表面密度。我们的结果为此类杂化纳米颗粒的实验制备提供了有用的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验