Suppr超能文献

深度驱动者:基于体细胞突变利用深度卷积神经网络预测癌症驱动基因

deepDriver: Predicting Cancer Driver Genes Based on Somatic Mutations Using Deep Convolutional Neural Networks.

作者信息

Luo Ping, Ding Yulian, Lei Xiujuan, Wu Fang-Xiang

机构信息

Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.

School of Computer Science, Shaanxi Normal University, Xian, China.

出版信息

Front Genet. 2019 Jan 29;10:13. doi: 10.3389/fgene.2019.00013. eCollection 2019.

Abstract

With the advances in high-throughput technologies, millions of somatic mutations have been reported in the past decade. Identifying driver genes with oncogenic mutations from these data is a critical and challenging problem. Many computational methods have been proposed to predict driver genes. Among them, machine learning-based methods usually train a classifier with representations that concatenate various types of features extracted from different kinds of data. Although successful, simply concatenating different types of features may not be the best way to fuse these data. We notice that a few types of data characterize the similarities of genes, to better integrate them with other data and improve the accuracy of driver gene prediction, in this study, a deep learning-based method (deepDriver) is proposed by performing convolution on mutation-based features of genes and their neighbors in the similarity networks. The method allows the convolutional neural network to learn information within mutation data and similarity networks simultaneously, which enhances the prediction of driver genes. deepDriver achieves AUC scores of 0.984 and 0.976 on breast cancer and colorectal cancer, which are superior to the competing algorithms. Further evaluations of the top 10 predictions also demonstrate that deepDriver is valuable for predicting new driver genes.

摘要

随着高通量技术的进步,在过去十年中已报道了数百万种体细胞突变。从这些数据中识别具有致癌突变的驱动基因是一个关键且具有挑战性的问题。已经提出了许多计算方法来预测驱动基因。其中,基于机器学习的方法通常使用从不同类型数据中提取的各种特征的表示来训练分类器。尽管取得了成功,但简单地拼接不同类型的特征可能不是融合这些数据的最佳方法。我们注意到有几种类型的数据表征了基因的相似性,为了更好地将它们与其他数据整合并提高驱动基因预测的准确性,在本研究中,通过对相似性网络中基因及其邻居基于突变的特征进行卷积,提出了一种基于深度学习的方法(deepDriver)。该方法允许卷积神经网络同时学习突变数据和相似性网络中的信息,从而增强了对驱动基因的预测。deepDriver在乳腺癌和结直肠癌上的AUC得分分别为0.984和0.976,优于竞争算法。对前10个预测的进一步评估也表明,deepDriver对于预测新的驱动基因很有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a66/6361806/a7a8cca2d98e/fgene-10-00013-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验