Suppr超能文献

感知维度影响听觉类别学习。

Perceptual dimensions influence auditory category learning.

作者信息

Roark Casey L, Holt Lori L

机构信息

Department of Psychology, Carnegie Mellon University, and the Center for the Neural Basis of Cognition, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.

出版信息

Atten Percept Psychophys. 2019 May;81(4):912-926. doi: 10.3758/s13414-019-01688-6.

Abstract

Human category learning appears to be supported by dual learning systems. Previous research indicates the engagement of distinct neural systems in learning categories that require selective attention to dimensions versus those that require integration across dimensions. This evidence has largely come from studies of learning across perceptually separable visual dimensions, but recent research has applied dual system models to understanding auditory and speech categorization. Since differential engagement of the dual learning systems is closely related to selective attention to input dimensions, it may be important that acoustic dimensions are quite often perceptually integral and difficult to attend to selectively. We investigated this issue across artificial auditory categories defined by center frequency and modulation frequency acoustic dimensions. Learners demonstrated a bias to integrate across the dimensions, rather than to selectively attend, and the bias specifically reflected a positive correlation between the dimensions. Further, we found that the acoustic dimensions did not equivalently contribute to categorization decisions. These results demonstrate the need to reconsider the assumption that the orthogonal input dimensions used in designing an experiment are indeed orthogonal in perceptual space as there are important implications for category learning.

摘要

人类的类别学习似乎由双重学习系统支持。先前的研究表明,在学习需要对维度进行选择性注意的类别与需要跨维度整合的类别时,不同的神经系统会参与其中。这一证据主要来自对跨感知可分离视觉维度的学习研究,但最近的研究已将双重系统模型应用于理解听觉和语音分类。由于双重学习系统的不同参与与对输入维度的选择性注意密切相关,因此声学维度通常在感知上是整合的且难以选择性地关注这一点可能很重要。我们通过由中心频率和调制频率声学维度定义的人工听觉类别来研究这个问题。学习者表现出跨维度整合而非选择性关注的偏向,并且这种偏向具体反映了维度之间的正相关。此外,我们发现声学维度对分类决策的贡献并不等同。这些结果表明,需要重新考虑在设计实验时使用的正交输入维度在感知空间中确实是正交的这一假设,因为这对类别学习有重要影响。

相似文献

1
Perceptual dimensions influence auditory category learning.感知维度影响听觉类别学习。
Atten Percept Psychophys. 2019 May;81(4):912-926. doi: 10.3758/s13414-019-01688-6.
2
Task and distribution sampling affect auditory category learning.任务和分布抽样会影响听觉类别学习。
Atten Percept Psychophys. 2018 Oct;80(7):1804-1822. doi: 10.3758/s13414-018-1552-5.
3
Unsupervised category learning with integral-dimension stimuli.使用整体维度刺激的无监督类别学习。
Q J Exp Psychol (Hove). 2012;65(8):1537-62. doi: 10.1080/17470218.2012.658821. Epub 2012 Apr 16.
4
Auditory information-integration category learning in young children and adults.婴幼儿和成人的听觉信息整合范畴学习。
J Exp Child Psychol. 2019 Dec;188:104673. doi: 10.1016/j.jecp.2019.104673. Epub 2019 Aug 17.

引用本文的文献

4
Auditory category learning is robust across training regimes.听觉范畴学习在训练模式下具有很强的稳健性。
Cognition. 2023 Aug;237:105467. doi: 10.1016/j.cognition.2023.105467. Epub 2023 May 4.
5
The nature of non-native speech sound representations.非母语语音表征的本质。
J Acoust Soc Am. 2022 Nov;152(5):3025. doi: 10.1121/10.0015230.
6
Do Infants Really Learn Phonetic Categories?婴儿真的能学习语音类别吗?
Open Mind (Camb). 2021 Nov 1;5:113-131. doi: 10.1162/opmi_a_00046. eCollection 2021.
9
Auditory information-integration category learning in young children and adults.婴幼儿和成人的听觉信息整合范畴学习。
J Exp Child Psychol. 2019 Dec;188:104673. doi: 10.1016/j.jecp.2019.104673. Epub 2019 Aug 17.

本文引用的文献

1
Task and distribution sampling affect auditory category learning.任务和分布抽样会影响听觉类别学习。
Atten Percept Psychophys. 2018 Oct;80(7):1804-1822. doi: 10.3758/s13414-018-1552-5.
2
Dimension-based statistical learning of vowels.基于维度的元音统计学习
J Exp Psychol Hum Percept Perform. 2015 Dec;41(6):1783-98. doi: 10.1037/xhp0000092. Epub 2015 Aug 17.
3
Dissociation of category-learning systems via brain potentials.通过脑电活动研究类别学习系统的分离
Front Hum Neurosci. 2015 Jul 7;9:389. doi: 10.3389/fnhum.2015.00389. eCollection 2015.
4
Tests of a Dual-systems Model of Speech Category Learning.言语类别学习双系统模型的测试
Biling (Camb Engl). 2014 Oct 1;17(4):709-728. doi: 10.1017/S1366728913000783.
5
Toward a dual-learning systems model of speech category learning.迈向言语类别学习的双学习系统模型。
Front Psychol. 2014 Jul 31;5:825. doi: 10.3389/fpsyg.2014.00825. eCollection 2014.
7
Dual-learning systems during speech category learning.言语类别学习中的双重学习系统。
Psychon Bull Rev. 2014 Apr;21(2):488-95. doi: 10.3758/s13423-013-0501-5.
9
Unsupervised category learning with integral-dimension stimuli.使用整体维度刺激的无监督类别学习。
Q J Exp Psychol (Hove). 2012;65(8):1537-62. doi: 10.1080/17470218.2012.658821. Epub 2012 Apr 16.
10
Development of implicit and explicit category learning.内隐和外显范畴学习的发展。
J Exp Child Psychol. 2011 Jul;109(3):321-35. doi: 10.1016/j.jecp.2011.02.002. Epub 2011 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验