Suppr超能文献

ssDNA 重组酶与 CRISPR-Cas9 系统在聚酮化合物生物合成基因簇敲除中的应用

Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.

机构信息

Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China.

出版信息

Appl Microbiol Biotechnol. 2019 Mar;103(6):2783-2795. doi: 10.1007/s00253-019-09654-w. Epub 2019 Feb 14.

Abstract

Pseudomonas putida KT2440 is a Gram-negative, biosafety strain that plays important roles in environmental and biotechnological applications. Highly efficient genome editing strategy is essential to the elucidation of gene function and construction of metabolic engineered strains. Building on our previously established recombineering-mediated markerless and scarless P. putida KT2440 chromosomal gene deletion methods, herein we combined single-stranded DNA (ssDNA) recombineering and CRISPR-Cas9 technologies for P. putida KT2440 genome editing. Firstly, an inactive kanamycin resistance gene was knocked into the P. putida KT2440 chromosome. Then, based on kanamycin selection, recombinase gene selection, ssDNA recombineering condition optimization, and gRNA expression promoter selection were performed. A two-plasmid genome editing system was established; the first is a broad host range, RK2 replicon-based plasmid cloned with the tightly regulated redβ and cas9 genes; the second is a broad host range, pBBR1 replicon-based, sgRNA expression plasmid. Gene point mutations and gene deletions were carried out; the genome editing efficiency is as high as 100%. The method will expedite the P. putida KT2440 metabolic engineering and synthetic biology studies.

摘要

恶臭假单胞菌 KT2440 是一种革兰氏阴性、生物安全菌株,在环境和生物技术应用中发挥着重要作用。高效的基因组编辑策略对于阐明基因功能和构建代谢工程菌株至关重要。基于我们之前建立的重组介导的无痕和无疤恶臭假单胞菌 KT2440 染色体基因缺失方法,本文将单链 DNA(ssDNA)重组和 CRISPR-Cas9 技术结合用于恶臭假单胞菌 KT2440 的基因组编辑。首先,将一个失活的卡那霉素抗性基因敲入恶臭假单胞菌 KT2440 染色体中。然后,基于卡那霉素选择、重组酶基因选择、ssDNA 重组条件优化和 gRNA 表达启动子选择进行操作。建立了一个双质粒基因组编辑系统;第一个是基于 RK2 复制子的广泛宿主范围质粒,克隆了受严格调控的 redβ 和 cas9 基因;第二个是基于 pBBR1 复制子的广泛宿主范围 sgRNA 表达质粒。进行了基因点突变和基因缺失;基因组编辑效率高达 100%。该方法将加速恶臭假单胞菌 KT2440 的代谢工程和合成生物学研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验