Department of Chemistry & Centre for Materials Crystallography , Aarhus University , DK-8000 Aarhus C , Denmark.
Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 United States.
Inorg Chem. 2019 Mar 4;58(5):3211-3218. doi: 10.1021/acs.inorgchem.8b03301. Epub 2019 Feb 14.
A breakthrough in the study of single-molecule magnets occurred with the discovery of zero-field slow magnetic relaxation and hysteresis for the linear iron(I) complex [Fe(C(SiMe))] (1), which has one of the largest spin-reversal barriers among mononuclear transition-metal single-molecule magnets. Theoretical studies have suggested that the magnetic anisotropy in 1 is made possible by pronounced stabilization of the iron d orbital due to 3d -4s mixing, an effect which is predicted to be less pronounced in the neutral iron(II) complex Fe(C(SiMe)) (2). However, experimental support for this interpretation has remained lacking. Here, we use high-resolution single-crystal X-ray diffraction data to generate multipole models of the electron density in these two complexes, which clearly show that the iron d orbital is more populated in 1 than in 2. This result can be interpreted as arising from greater stabilization of the d orbital in 1, thus offering an unprecedented experimental rationale for the origin of magnetic anisotropy in 1.
一项关于单分子磁体的研究取得了突破,发现了线性铁(I)配合物[Fe(C(SiMe))](1)在零场下的缓慢磁弛豫和滞后现象,该配合物具有单核过渡金属单分子磁体中最大的自旋反转势垒之一。理论研究表明,1 中的磁各向异性是由于 3d-4s 混合导致铁 d 轨道的显著稳定化而产生的,这种效应在中性铁(II)配合物 Fe(C(SiMe))(2)中预计不太明显。然而,对此解释的实验支持仍然缺乏。在这里,我们使用高分辨率单晶 X 射线衍射数据来生成这两个配合物中电子密度的多极模型,这些模型清楚地表明,铁 d 轨道在 1 中的填充程度比在 2 中更高。这一结果可以解释为 1 中 d 轨道的稳定性更大,从而为 1 中磁各向异性的起源提供了前所未有的实验依据。