Kumar Pawan, Vahidzadeh Ehsan, Thakur Ujwal K, Kar Piyush, Alam Kazi M, Goswami Ankur, Mahdi Najia, Cui Kai, Bernard Guy M, Michaelis Vladimir K, Shankar Karthik
Department of Electrical and Computer Engineering , University of Alberta , 9211 116 Street , Edmonton , Alberta T6G 1H9 , Canada.
Nanotechnology Research Centre, National Research Council of Canada , Edmonton , Alberta T6G 2M9 , Canada.
J Am Chem Soc. 2019 Apr 3;141(13):5415-5436. doi: 10.1021/jacs.9b00144. Epub 2019 Mar 19.
Modification of carbon nitride based polymeric 2D materials for tailoring their optical, electronic and chemical properties for various applications has gained significant interest. The present report demonstrates the synthesis of a novel modified carbon nitride framework with a remarkable 3:5 C:N stoichiometry (CN) and an electronic bandgap of 1.76 eV, by thermal deammoniation of the melem hydrazine precursor. Characterization revealed that in the CN polymer, two s-heptazine units are bridged together with azo linkage, which constitutes an entirely new and different bonding fashion from g-CN where three heptazine units are linked together with tertiary nitrogen. Extended conjugation due to overlap of azo nitrogens and increased electron density on heptazine nucleus due to the aromatic π network of heptazine units lead to an upward shift of the valence band maximum resulting in bandgap reduction down to 1.76 eV. XRD, He-ion imaging, HR-TEM, EELS, PL, fluorescence lifetime imaging, Raman, FTIR, TGA, KPFM, XPS, NMR and EPR clearly show that the properties of CN are distinct from pristine carbon nitride (g-CN). When used as an electron transport layer (ETL) in MAPbBr based halide perovskite solar cells, CN outperformed g-CN, in particular generating an open circuit photovoltage as high as 1.3 V, while CN blended with MA FAPb(IBr) perovskite active layer achieved a photoconversion efficiency (PCE) up to 16.7%. CN was also shown to be an effective visible light sensitizer for TiO photoanodes in photoelectrochemical water splitting. Because of its electron-rich character, the CN material displayed instantaneous adsorption of methylene blue from aqueous solution reaching complete equilibrium within 10 min, which is significantly faster than pristine g-CN and other carbon based materials. CN coupled with plasmonic silver nanocubes promotes plasmon-exciton coinduced surface catalytic reactions reaching completion at much low laser intensity (1.0 mW) than g-CN, which showed sluggish performance even at high laser power (10.0 mW). The relatively narrow bandgap and 2D structure of CN make it an interesting air-stable and temperature-resistant semiconductor for optoelectronic applications while its electron-rich character and intrasheet cavity make it an attractive supramolecular adsorbent for environmental applications.
对基于氮化碳的聚合物二维材料进行改性以调整其光学、电子和化学性质用于各种应用已引起了极大的关注。本报告展示了通过三聚氰胺肼前体的热脱氨反应合成一种新型改性氮化碳骨架,其具有显著的3:5 C:N化学计量比(CN)和1.76 eV的电子带隙。表征显示,在CN聚合物中,两个s-七嗪单元通过偶氮键连接在一起,这构成了一种全新的、与g-CN不同的键合方式,在g-CN中三个七嗪单元通过叔氮连接在一起。由于偶氮氮原子的重叠导致共轭扩展,以及七嗪单元的芳香π网络使七嗪核上的电子密度增加,导致价带最大值向上移动,从而使带隙减小至1.76 eV。XRD、氦离子成像、高分辨透射电子显微镜、电子能量损失谱、光致发光、荧光寿命成像、拉曼光谱、傅里叶变换红外光谱、热重分析、开尔文探针力显微镜、X射线光电子能谱、核磁共振和电子顺磁共振清楚地表明,CN的性质与原始氮化碳(g-CN)不同。当用作基于MAPbBr的卤化物钙钛矿太阳能电池的电子传输层(ETL)时,CN的性能优于g-CN,特别是产生高达1.3 V的开路光电压,而与MA FAPb(IBr)钙钛矿活性层混合的CN实现了高达16.7%的光电转换效率(PCE)。CN还被证明是用于光电化学水分解的TiO光阳极的有效可见光敏化剂。由于其富电子特性,CN材料在10分钟内即可从水溶液中瞬间吸附亚甲基蓝并达到完全平衡,这比原始的g-CN和其他碳基材料快得多。与等离子体银纳米立方体耦合的CN促进等离子体-激子共诱导的表面催化反应,在比g-CN低得多的激光强度(1.0 mW)下即可完成,而g-CN即使在高激光功率(10.0 mW)下也表现出缓慢的性能。CN相对较窄的带隙和二维结构使其成为用于光电子应用的有趣的空气稳定且耐温的半导体,而其富电子特性和片内空腔使其成为用于环境应用的有吸引力的超分子吸附剂。