IEEE Trans Image Process. 2019 Aug;28(8):3688-3702. doi: 10.1109/TIP.2019.2898843. Epub 2019 Feb 11.
Deblurring is a fundamental inverse problem in bioimaging. It requires modeling the point spread function (PSF), which captures the optical distortions entailed by the image formation process. The PSF limits the spatial resolution attainable for a given microscope. However, recent applications require a higher resolution and have prompted the development of super-resolution techniques to achieve sub-pixel accuracy. This requirement restricts the class of suitable PSF models to analog ones. In addition, deblurring is computationally intensive, hence further requiring computationally efficient models. A custom candidate fitting both the requirements is the Gaussian model. However, this model cannot capture the rich tail structures found in both the theoretical and empirical PSFs. In this paper, we aim at improving the reconstruction accuracy beyond the Gaussian model, while preserving its computational efficiency. We introduce a new class of analog PSF models based on the Gaussian mixtures. The number of Gaussian kernels controls both the modeling accuracy and the computational efficiency of the model: the lower the number of kernels, the lower the accuracy and the higher the efficiency. To explore the accuracy-efficiency tradeoff, we propose a variational formulation of the PSF calibration problem, where a convex sparsity-inducing penalty on the number of Gaussian kernels allows trading accuracy for efficiency. We derive an efficient algorithm based on a fully split formulation of alternating split Bregman. We assess our framework on synthetic and real data, and demonstrate a better reconstruction accuracy in both geometry and photometry in point source localization-a fundamental inverse problem in fluorescence microscopy.
去模糊是生物成像中的一个基本反问题。它需要对点扩散函数 (PSF) 进行建模,PSF 捕捉了图像形成过程中涉及的光学扭曲。PSF 限制了给定显微镜可以达到的空间分辨率。然而,最近的应用需要更高的分辨率,并促使开发了超分辨率技术来实现亚像素精度。这一要求将合适的 PSF 模型限制为模拟模型。此外,去模糊计算密集,因此进一步需要计算效率高的模型。符合这两个要求的定制候选模型是高斯模型。然而,该模型无法捕捉到理论和经验 PSF 中都存在的丰富尾部结构。在本文中,我们旨在在保留其计算效率的同时,提高超越高斯模型的重建精度。我们引入了一种基于高斯混合的新的模拟 PSF 模型类。高斯核的数量控制着模型的建模精度和计算效率:核的数量越低,精度越低,效率越高。为了探索精度-效率的权衡,我们提出了一种 PSF 校准问题的变分公式,其中对高斯核数量的凸稀疏性诱导惩罚允许在精度和效率之间进行权衡。我们基于交替分裂 Bregman 的完全分裂公式推导出了一种有效的算法。我们在合成数据和真实数据上评估了我们的框架,并在荧光显微镜中基本的点源定位反问题中证明了在几何和光度方面的更好的重建精度。