IEEE/ACM Trans Comput Biol Bioinform. 2020 Sep-Oct;17(5):1703-1713. doi: 10.1109/TCBB.2019.2899574. Epub 2019 Feb 14.
Although the dynamical behavior of the p53-Mdm2 loop has been extensively studied, the understanding of the mechanism underlying the regulation of this pathway still remains limited. Herein, we developed an integrated model with five basic components and three ubiquitous time delays for the p53-Mdm2 interaction in response to DNA damage following ionizing radiation (IR). We showed that a sufficient amount of activated ATM level can initiate the p53 oscillations with nearly the same amplitude over a wide range of the ATM level; a proper range of p53 level is also required for generating the oscillations, for too high or too low levels it would fail to generate the oscillations; and increased Mdm2 level leads to decreased amplitude of the p53 oscillation and reduced expression of the p53 activity. Moreover, we found that the negative feedback loop formed between p53 and nuclear Mdm2 plays a dominant role in determining the p53 dynamics, whereas when interaction strength of the negative feedback loop becomes weaker, the positive feedback loop formed between p53 and cytoplasmatic Mdm2 can induce different types of dynamics. Furthermore, we demonstrated that the total time delay required for protein production and nuclear translocation of Mdm2 can induce p53 oscillations even when the p53 level is at a certain stable high steady state or at a certain stable low steady state. In addition, the two important features of the oscillatory dynamics-amplitude and period-can be controlled by such time delay. These results are in agreement with multiple experimental observations and may enrich our understanding of the dynamics of the p53 network.
尽管 p53-Mdm2 环的动力学行为已经得到了广泛的研究,但对该途径调控机制的理解仍然有限。在此,我们针对电离辐射(IR)后 DNA 损伤,构建了一个包含五个基本组件和三个普遍时滞的整合模型,用于研究 p53-Mdm2 相互作用。结果表明,足够量的激活 ATM 水平可以在较宽的 ATM 水平范围内引发具有几乎相同振幅的 p53 振荡;也需要适当的 p53 水平范围来产生振荡,因为过高或过低的水平都会导致无法产生振荡;并且增加 Mdm2 水平会导致 p53 振荡的幅度降低和 p53 活性表达降低。此外,我们发现 p53 和核 Mdm2 之间形成的负反馈环在确定 p53 动力学方面起着主导作用,而当负反馈环的相互作用强度变弱时,p53 和细胞质 Mdm2 之间形成的正反馈环可以诱导不同类型的动力学。此外,我们证明了 Mdm2 蛋白产生和核易位所需的总时滞可以诱导 p53 振荡,即使在 p53 水平处于某个稳定的高稳态或某个稳定的低稳态时也是如此。此外,这种时滞可以控制振荡动力学的两个重要特征——振幅和周期。这些结果与多项实验观察结果一致,可能丰富我们对 p53 网络动力学的理解。