Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, People's Republic of China.
Department of Mathematics, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China.
IET Syst Biol. 2019 Aug;13(4):180-185. doi: 10.1049/iet-syb.2019.0006.
Although the oscillatory dynamics of the p53 network have been extensively studied, the understanding of the mechanism of delay-induced oscillations is still limited. In this paper, a comprehensive mathematical model of p53 network is studied, which contains two delayed negative feedback loops. By studying the model with and without explicit delays, the results indicate that the time delay of Mdm2 protein synthesis can well control the pulse shape but cannot induce p53 oscillation alone, while the time delay required for Wip1 protein synthesis induces a Hopf bifurcation to drive p53 oscillation. In addition, the synergy of the two delays will cause the p53 network to oscillate in advance, indicating that p53 begins the repair process earlier in the damaged cell. Furthermore, the stability and bifurcation of the model are addressed, which may highlight the role of time delay in p53 oscillations.
虽然 p53 网络的振荡动力学已经得到了广泛的研究,但对延迟诱导振荡的机制的理解仍然有限。在本文中,研究了一个包含两个延迟负反馈回路的 p53 网络的综合数学模型。通过对具有和不具有显式延迟的模型进行研究,结果表明,Mdm2 蛋白合成的时间延迟可以很好地控制脉冲形状,但不能单独诱导 p53 振荡,而 Wip1 蛋白合成所需的时间延迟则会诱导 Hopf 分岔来驱动 p53 振荡。此外,两个延迟的协同作用会导致 p53 网络提前振荡,这表明受损细胞中的 p53 更早开始修复过程。此外,还研究了模型的稳定性和分岔,这可能突出了时间延迟在 p53 振荡中的作用。