Computational Biology Research Group , Max Planck Institute for Informatics , Saarland Informatics Campus, Campus E1 4 , 66123 Saarbrücken , Germany.
Center for Bioinformatics , Saarland University , 66123 Saarbrücken , Germany.
J Chem Theory Comput. 2019 Apr 9;15(4):2166-2178. doi: 10.1021/acs.jctc.8b01074. Epub 2019 Mar 6.
A new method termed "Relative Principal Components Analysis" (RPCA) is introduced that extracts optimal relevant principal components to describe the change between two data samples representing two macroscopic states. The method is widely applicable in data-driven science. Calculating the components is based on a physical framework that introduces the objective function (the Kullback-Leibler divergence) appropriate for quantifying the change of the macroscopic state affected by the changes in the microscopic features. To demonstrate the applicability of RPCA, we analyze the thermodynamically relevant conformational changes of the protein HIV-1 protease upon binding to different drug molecules. In this case, the RPCA method provides a sound thermodynamic foundation for analyzing the binding process and thus characterizing both the collective and the locally relevant conformational changes. Moreover, the relevant collective conformational changes can be reconstructed from the informative latent variables to exhibit both the enhanced and the restricted conformational fluctuations upon ligand association.
引入了一种新的方法,称为“相对主成分分析”(RPCA),该方法提取最佳相关主成分,以描述代表两种宏观状态的两个数据样本之间的变化。该方法在数据驱动的科学中具有广泛的适用性。计算这些成分基于一个物理框架,该框架引入了合适的目标函数(Kullback-Leibler 散度),用于量化受微观特征变化影响的宏观状态的变化。为了演示 RPCA 的适用性,我们分析了 HIV-1 蛋白酶在与不同药物分子结合时与热力学相关的构象变化。在这种情况下,RPCA 方法为分析结合过程提供了合理的热力学基础,从而对整体和局部相关构象变化进行了特征化。此外,相关的整体构象变化可以从信息性潜在变量中重建,以显示配体结合时增强和受限的构象波动。