Suppr超能文献

相对主成分分析:在分析生物分子构象变化中的应用。

Relative Principal Components Analysis: Application to Analyzing Biomolecular Conformational Changes.

机构信息

Computational Biology Research Group , Max Planck Institute for Informatics , Saarland Informatics Campus, Campus E1 4 , 66123 Saarbrücken , Germany.

Center for Bioinformatics , Saarland University , 66123 Saarbrücken , Germany.

出版信息

J Chem Theory Comput. 2019 Apr 9;15(4):2166-2178. doi: 10.1021/acs.jctc.8b01074. Epub 2019 Mar 6.

Abstract

A new method termed "Relative Principal Components Analysis" (RPCA) is introduced that extracts optimal relevant principal components to describe the change between two data samples representing two macroscopic states. The method is widely applicable in data-driven science. Calculating the components is based on a physical framework that introduces the objective function (the Kullback-Leibler divergence) appropriate for quantifying the change of the macroscopic state affected by the changes in the microscopic features. To demonstrate the applicability of RPCA, we analyze the thermodynamically relevant conformational changes of the protein HIV-1 protease upon binding to different drug molecules. In this case, the RPCA method provides a sound thermodynamic foundation for analyzing the binding process and thus characterizing both the collective and the locally relevant conformational changes. Moreover, the relevant collective conformational changes can be reconstructed from the informative latent variables to exhibit both the enhanced and the restricted conformational fluctuations upon ligand association.

摘要

引入了一种新的方法,称为“相对主成分分析”(RPCA),该方法提取最佳相关主成分,以描述代表两种宏观状态的两个数据样本之间的变化。该方法在数据驱动的科学中具有广泛的适用性。计算这些成分基于一个物理框架,该框架引入了合适的目标函数(Kullback-Leibler 散度),用于量化受微观特征变化影响的宏观状态的变化。为了演示 RPCA 的适用性,我们分析了 HIV-1 蛋白酶在与不同药物分子结合时与热力学相关的构象变化。在这种情况下,RPCA 方法为分析结合过程提供了合理的热力学基础,从而对整体和局部相关构象变化进行了特征化。此外,相关的整体构象变化可以从信息性潜在变量中重建,以显示配体结合时增强和受限的构象波动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f262/6728065/c73c90098373/ct-2018-01074a_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验