Institute for Genomic Diversity, Cornell University, Ithaca, NY, United States of America.
Department of Biology & Microbiology, South Dakota State University, Brookings, SD, United States of America.
PLoS Comput Biol. 2019 Feb 14;15(2):e1006792. doi: 10.1371/journal.pcbi.1006792. eCollection 2019 Feb.
Next-Generation Sequencing has made available substantial amounts of large-scale Omics data, providing unprecedented opportunities to understand complex biological systems. Specifically, the value of RNA-Sequencing (RNA-Seq) data has been confirmed in inferring how gene regulatory systems will respond under various conditions (bulk data) or cell types (single-cell data). RNA-Seq can generate genome-scale gene expression profiles that can be further analyzed using correlation analysis, co-expression analysis, clustering, differential gene expression (DGE), among many other studies. While these analyses can provide invaluable information related to gene expression, integration and interpretation of the results can prove challenging. Here we present a tool called IRIS-EDA, which is a Shiny web server for expression data analysis. It provides a straightforward and user-friendly platform for performing numerous computational analyses on user-provided RNA-Seq or Single-cell RNA-Seq (scRNA-Seq) data. Specifically, three commonly used R packages (edgeR, DESeq2, and limma) are implemented in the DGE analysis with seven unique experimental design functionalities, including a user-specified design matrix option. Seven discovery-driven methods and tools (correlation analysis, heatmap, clustering, biclustering, Principal Component Analysis (PCA), Multidimensional Scaling (MDS), and t-distributed Stochastic Neighbor Embedding (t-SNE)) are provided for gene expression exploration which is useful for designing experimental hypotheses and determining key factors for comprehensive DGE analysis. Furthermore, this platform integrates seven visualization tools in a highly interactive manner, for improved interpretation of the analyses. It is noteworthy that, for the first time, IRIS-EDA provides a framework to expedite submission of data and results to NCBI's Gene Expression Omnibus following the FAIR (Findable, Accessible, Interoperable and Reusable) Data Principles. IRIS-EDA is freely available at http://bmbl.sdstate.edu/IRIS/.
下一代测序技术提供了大量的大规模组学数据,为理解复杂的生物系统提供了前所未有的机会。具体来说,RNA 测序(RNA-Seq)数据的价值已在推断基因调控系统在各种条件(批量数据)或细胞类型(单细胞数据)下将如何响应方面得到了证实。RNA-Seq 可以生成全基因组规模的基因表达谱,这些谱可以进一步使用相关分析、共表达分析、聚类、差异基因表达(DGE)等分析进行分析。虽然这些分析可以提供与基因表达相关的宝贵信息,但结果的整合和解释可能具有挑战性。在这里,我们介绍了一种名为 IRIS-EDA 的工具,它是一个用于表达数据分析的闪亮网络服务器。它为用户提供了一个简单易用的平台,可对用户提供的 RNA-Seq 或单细胞 RNA-Seq(scRNA-Seq)数据进行许多计算分析。具体来说,在 DGE 分析中实现了三个常用的 R 包(edgeR、DESeq2 和 limma),并具有七种独特的实验设计功能,包括用户指定的设计矩阵选项。为了探索基因表达,提供了七种发现驱动的方法和工具(相关分析、热图、聚类、双聚类、主成分分析(PCA)、多维尺度分析(MDS)和 t 分布随机邻居嵌入(t-SNE)),这对于设计实验假设和确定全面 DGE 分析的关键因素非常有用。此外,该平台以高度交互的方式集成了七种可视化工具,以改善分析的解释。值得注意的是,IRIS-EDA 首次提供了一个框架,以加快根据 FAIR(可发现、可访问、可互操作和可重用)数据原则将数据和结果提交到 NCBI 的基因表达综合数据库。IRIS-EDA 可免费在 http://bmbl.sdstate.edu/IRIS/ 获得。