State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China.
College of Life Science, Nankai University, Tianjin, China.
Biochem Biophys Res Commun. 2019 Mar 26;511(1):21-27. doi: 10.1016/j.bbrc.2019.02.024. Epub 2019 Feb 11.
The molybdenum cofactor, composed of molybdopterin and molybdenum, is a necessary compound for the catalytic activity of molybdenum enzymes. Molybdenum cofactor biosynthesis is a conserved multi-step process involving several enzymes. Molybdopterin synthase, a hetero-tetrameric enzyme composed of a pair of MoaE-MoaD subunits, catalyzes the generation of the cis-dithiolene group of molybdopterin in the second step of the process. The cis-dithiolene group can covalently bind molybdenum. Most mycobacterial species possess several genes encoding the full pathway of molybdenum cofactor biosynthesis. In M. smegmatis, the moaD2 and moaE2 genes encode the functional molybdopterin synthase. However, M. tuberculosis has genes encoding several molybdopterin synthase subunit homologs, including moaD1, moaD2, moaE1, moaE2, and moaX, which encodes a MoaD-MoaE fusion protein. Previous studies have shown that moaD2 and moaE2 encode functional molybdopterin synthase. Here, we report the crystal structures of two substrate-free molybdopterin synthases from two different mycobacterial pathogens, M. tuberculosis and M. smegmatis, at 2.1 Å and 2.6 Å resolutions, respectively. The overall structure of both molybdopterin synthases was hetero-tetrameric, consisting of a MoaE2 dimer flanked on either side by single MoaD2 subunits. The carboxyl-terminal domain of MoaD2 inserted into MoaE2, forming the active pocket. A comparison with previously reported molybdopterin synthase structures showed that substrate-binding and catalytic residues were conserved, despite low sequence similarity among these enzymes. The low sequence identity at the MoaE-MoaD heterodimer interface may provide the structural basis to explore mycobacterial inhibitors.
钼辅因子由钼喋呤和钼组成,是钼酶催化活性所必需的化合物。钼辅因子生物合成是一个保守的多步骤过程,涉及几种酶。钼喋呤合酶是一种由一对 MoaE-MoaD 亚基组成的异四聚体酶,在该过程的第二步催化钼喋呤中顺式二硫烯基团的生成。顺式二硫烯基团可以与钼共价结合。大多数分枝杆菌物种都有几个编码钼辅因子生物合成全途径的基因。在 M. smegmatis 中,moaD2 和 moaE2 基因编码有功能的钼喋呤合酶。然而,M. tuberculosis 有几个编码钼喋呤合酶亚基同源物的基因,包括 moaD1、moaD2、moaE1、moaE2 和 moaX,它编码 MoaD-MoaE 融合蛋白。先前的研究表明 moaD2 和 moaE2 编码有功能的钼喋呤合酶。在这里,我们报告了来自两种不同分枝杆菌病原体 M. tuberculosis 和 M. smegmatis 的两种无底物钼喋呤合酶的晶体结构,分辨率分别为 2.1 Å 和 2.6 Å。两种钼喋呤合酶的整体结构均为异四聚体,由 MoaE2 二聚体侧翼的单个 MoaD2 亚基组成。MoaD2 的羧基末端结构域插入 MoaE2 中,形成活性口袋。与先前报道的钼喋呤合酶结构的比较表明,尽管这些酶之间的序列相似性较低,但底物结合和催化残基是保守的。MoaE-MoaD 异二聚体界面处的低序列同一性可能为探索分枝杆菌抑制剂提供结构基础。