Suppr超能文献

利用治疗药物监测数据处理基于模型的剂量个体化中的间变异性。

Handling interoccasion variability in model-based dose individualization using therapeutic drug monitoring data.

机构信息

Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.

出版信息

Br J Clin Pharmacol. 2019 Jun;85(6):1326-1336. doi: 10.1111/bcp.13901. Epub 2019 Apr 29.

Abstract

AIMS

This study aims to assess approaches to handle interoccasion variability (IOV) in a model-based therapeutic drug monitoring (TDM) context, using a population pharmacokinetic model of coagulation factor VIII as example.

METHODS

We assessed 5 model-based TDM approaches: empirical Bayes estimates (EBEs) from a model including IOV, with individualized doses calculated based on individual parameters either (i) including or (ii) excluding variability related to IOV; and EBEs from a model excluding IOV by (iii) setting IOV to zero, (iv) summing variances of interindividual variability (IIV) and IOV into a single IIV term, or (v) re-estimating the model without IOV. The impact of varying IOV magnitudes (0-50%) and number of occasions/observations was explored. The approaches were compared with conventional weight-based dosing. Predictive performance was assessed with the prediction error percentiles.

RESULTS

When IOV was lower than IIV, the accuracy was good for all approaches (50 percentile of the prediction error [P50] <7.4%), but the precision varied substantially between IOV magnitudes (P97.5 61-528%). Approach (ii) was the most precise forecasting method across a wide range of scenarios, particularly in case of sparse sampling or high magnitudes of IOV. Weight-based dosing led to less precise predictions than the model-based TDM approaches in most scenarios.

CONCLUSIONS

Based on the studied scenarios and theoretical expectations, the best approach to handle IOV in model-based dose individualization is to include IOV in the generation of the EBEs but exclude the portion of unexplained variability related to IOV in the individual parameters used to calculate the future dose.

摘要

目的

本研究旨在评估在基于模型的治疗药物监测(TDM)背景下处理个体间变异性(IOV)的方法,以凝血因子 VIII 的群体药代动力学模型为例。

方法

我们评估了 5 种基于模型的 TDM 方法:纳入 IOV 的模型的经验贝叶斯估计(EBE),根据个体参数计算个体化剂量,这些参数包括或不包括与 IOV 相关的变异性;通过(iii)将 IOV 设置为零、(iv)将个体间变异性(IIV)和 IOV 的方差相加到单个 IIV 项中、或(v)在没有 IOV 的情况下重新估计模型,排除 IOV 的模型的 EBE。研究了 IOV 幅度(0-50%)和观测次数的变化对结果的影响。采用预测误差百分位数比较了这些方法与传统的基于体重的给药方法。

结果

当 IOV 低于 IIV 时,所有方法的准确性都很好(预测误差的 50 百分位数 [P50] <7.4%),但 IOV 幅度之间的精度差异很大(P97.5 为 61-528%)。在各种情况下,方法(ii)是最精确的预测方法,尤其是在采样稀疏或 IOV 幅度较大的情况下。在大多数情况下,基于体重的给药方法比基于模型的 TDM 方法的预测精度低。

结论

根据研究的情况和理论预期,在基于模型的剂量个体化中处理 IOV 的最佳方法是在 EBE 的生成中纳入 IOV,但在用于计算未来剂量的个体参数中排除与 IOV 相关的未解释变异性部分。

相似文献

引用本文的文献

本文引用的文献

5
THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview.《药理学概要 2017/18》:概述。
Br J Pharmacol. 2017 Dec;174 Suppl 1(Suppl Suppl 1):S1-S16. doi: 10.1111/bph.13882.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验