Cona Maria Silvia, Lecchi Mara, Cresta Sara, Damian Silvia, Del Vecchio Michele, Necchi Andrea, Poggi Marta Maria, Raggi Daniele, Randon Giovanni, Ratta Raffaele, Signorelli Diego, Vernieri Claudio, de Braud Filippo, Verderio Paolo, Di Nicola Massimo
Medical Oncology Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian 1, 20133 Milan, Italy.
Bioinformatics and Biostatistics Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian 1, 20133 Milan, Italy.
Cancers (Basel). 2019 Feb 14;11(2):223. doi: 10.3390/cancers11020223.
Predictive biomarkers of response to immune-checkpoint inhibitors (ICIs) are an urgent clinical need. The aim of this study is to identify manageable parameters to use in clinical practice to select patients with higher probability of response to ICIs. Two-hundred-and-seventy-one consecutive metastatic solid tumor patients, treated from 2013 until 2017 with anti- Programmed death-ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) ICIs, were evaluated for baseline lactate dehydrogenase (LDH) serum level, performance status (PS), age, neutrophil-lymphocyte ratio, type of immunotherapy, number of metastatic sites, histology, and sex. A training and validation set were used to build and test models, respectively. The variables' effects were assessed through odds ratio estimates (OR) and area under the receive operating characteristic curves (AUC), from univariate and multivariate logistic regression models. A final multivariate model with LDH, age and PS showed significant ORs and an AUC of 0.771. Results were statistically validated and used to devise an Excel algorithm to calculate the patient's response probabilities. We implemented an interactive Excel algorithm based on three variables (baseline LDH serum level, age and PS) which is able to provide a higher performance in response prediction to ICIs compared with LDH alone. This tool could be used in a real-life setting to identify ICIs in responding patients.
免疫检查点抑制剂(ICI)反应的预测生物标志物是临床急需的。本研究的目的是确定可用于临床实践的可控参数,以选择对ICI反应可能性较高的患者。对2013年至2017年期间连续接受抗程序性死亡配体1(PD-L1)/程序性细胞死亡蛋白1(PD-1)ICI治疗的271例转移性实体瘤患者,评估其基线乳酸脱氢酶(LDH)血清水平、体能状态(PS)、年龄、中性粒细胞与淋巴细胞比值、免疫治疗类型、转移部位数量、组织学和性别。分别使用训练集和验证集来构建和测试模型。通过单变量和多变量逻辑回归模型的比值比估计(OR)和受试者操作特征曲线下面积(AUC)评估变量的影响。最终包含LDH、年龄和PS的多变量模型显示出显著的OR值,AUC为0.771。结果经过统计学验证,并用于设计一个Excel算法来计算患者的反应概率。我们基于三个变量(基线LDH血清水平、年龄和PS)实现了一个交互式Excel算法,与单独使用LDH相比,该算法在预测ICI反应方面具有更高的性能。该工具可用于实际临床环境中识别对ICI有反应的患者。