School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
Department of Chemistry, Bhatter College, Dantan, Paschim Medinipur 721426, India.
J Chem Phys. 2019 Feb 14;150(6):064308. doi: 10.1063/1.5064519.
In order to circumvent numerical inaccuracy originating from the singularity of nonadiabatic coupling terms (NACTs), we need to perform kinetically coupled adiabatic to potentially coupled diabatic transformation of the nuclear Schrödinger Equation. Such a transformation is difficult to achieve for higher dimensional sub-Hilbert spaces due to inherent complicacy of adiabatic to diabatic transformation (ADT) equations. Nevertheless, detailed expressions of ADT equations are formulated for six coupled electronic states for the first time and their validity is extensively examined for a well-known radical cation, namely, 1,3,5-CHF (TFBZ). While implementing this formulation, we compute ab initio adiabatic potential energy surfaces (PESs) and NACTs within the low-lying six electronic states (X̃E, ÃA , B̃E, and C̃A ), where several types of nonadiabatic interactions, like Jahn-Teller conical intersections (CI), accidental CIs, accidental seams (series of degenerate points), and pseudo Jahn-Teller interactions can be observed over the Franck-Condon region of nuclear configuration space. Those interactions are depicted by exploring degenerate components of C-C asymmetric stretching, C-C symmetric stretching, and C-C-C scissoring motion (Q, Q, Q, Q, Q, and Q) to compute complete active space self-consistent field level adiabatic PESs and NACTs as implemented in the MOLPRO quantum chemistry package. Subsequently, we perform the ADT using our newly devised fifteen (15) ADT equations to locate the position of CIs, verify the quantization of NACTs, and to construct highly accurate diabatic PESs.
为了规避源于非绝热耦合项(NACTs)奇点的数值不准确性,我们需要对核薛定谔方程进行动力学耦合的绝热到潜在耦合的非绝热变换。由于绝热到非绝热变换(ADT)方程的固有复杂性,对于更高维次的子希尔伯特空间,这种变换很难实现。然而,我们首次为六个耦合电子态制定了 ADT 方程的详细表达式,并广泛检验了它们在著名自由基阳离子 1,3,5-CHF (TFBZ) 中的有效性。在实施这一表述时,我们计算了在低能六个电子态(X̃E、ÃA、B̃E 和 C̃A)内的从头算绝热势能面(PESs)和 NACTs,其中可以观察到几种类型的非绝热相互作用,如 Jahn-Teller 锥形交叉(CI)、意外 CI、意外接缝(退化点系列)和伪 Jahn-Teller 相互作用,跨越核构型空间的 Franck-Condon 区域。通过探索 C-C 不对称伸缩、C-C 对称伸缩和 C-C-C 剪断运动(Q、Q、Q、Q、Q 和 Q)的简并分量,我们描述了这些相互作用,以计算完全活性空间自洽场水平绝热 PESs 和 NACTs,这些都在 MOLPRO 量子化学包中实现。随后,我们使用我们新设计的十五(15)个 ADT 方程进行 ADT,以定位 CI 的位置、验证 NACTs 的量子化,并构建高度精确的非绝热 PESs。