School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
Department of Chemistry, Bhatter College, Dantan, Paschim Medinipur 721426, India.
J Chem Theory Comput. 2020 Mar 10;16(3):1666-1680. doi: 10.1021/acs.jctc.9b00948. Epub 2020 Feb 14.
The major bottleneck of first principle based beyond Born-Oppenheimer (BBO) treatment originates from large number and complicated expressions of adiabatic to diabatic transformation (ADT) equations for higher dimensional sub-Hilbert spaces. In order to overcome such shortcoming, we develop a generalized algorithm, "ADT" to generate the nonadiabatic equations through symbolic manipulation and to construct highly accurate diabatic surfaces for molecular processes involving excited electronic states. It is noteworthy to mention that the nonadiabatic coupling terms (NACTs) often become singular (removable) at degenerate point(s) or along a seam in the nuclear configuration space (CS) and thereby, a unitary transformation is required to convert the kinetically coupled (adiabatic) Hamiltonian to a potentially (diabatic) one to avoid such singularity(ies). The "ADT" program can be efficiently used to (a) formulate analytic functional forms of differential equations for ADT angles and diabatic potential energy matrix and (b) solve the set of coupled differential equations numerically to evaluate ADT angles, residue due to singularity(ies), ADT matrices, and finally, diabatic potential energy surfaces (PESs). For the numerical case, user can directly provide data (adiabatic PESs and NACTs) as input files to this software or can generate those input files through in-built python codes interfacing MOLPRO followed by ADT calculation. In order to establish the workability of our program package, we selectively choose six realistic molecular species, namely, NO radical, H, F + H, NO radical, CH radical cation, and 1,3,5-CHF radical cation, where two, three, five and six electronic states exhibit profound nonadiabatic interactions and are employed to compute diabatic PESs by using calculated adiabatic PESs and NACTs. The "ADT" package released under the GNU General Public License v3.0 (GPLv3) is available at https://github.com/AdhikariLAB/ADT-Program and also as the Supporting Information of this article.
基于第一性原理的超越玻恩-奥本海默(BBO)处理的主要瓶颈源自于高维子希尔伯特空间的绝热到非绝热变换(ADT)方程数量多且表达式复杂。为了克服这一缺点,我们开发了一种通用算法“ADT”,通过符号操作生成非绝热方程,并构建用于涉及激发电子态的分子过程的高度精确的非绝热表面。值得一提的是,非绝热耦合项(NACT)在简并点或核构型空间(CS)中的缝线上通常变得奇异(可移除),因此需要进行幺正变换,将动力学耦合的(绝热)哈密顿量转换为潜在的(非绝热)哈密顿量,以避免这种奇异点。“ADT”程序可有效地用于:(a)为 ADT 角和非绝热势能矩阵的微分方程制定解析函数形式;(b)通过数值求解耦合微分方程组来评估 ADT 角、奇点引起的残差、ADT 矩阵,最后是非绝热势能表面(PES)。对于数值情况,用户可以直接将数据(绝热 PES 和 NACT)作为输入文件提供给该软件,或者可以通过与 MOLPRO 接口的内置 Python 代码生成这些输入文件,然后进行 ADT 计算。为了验证我们程序包的可行性,我们有选择地选取了六种实际的分子物种,即 NO 自由基、H、F+H、NO 自由基、CH 自由基阳离子和 1,3,5-CHF 自由基阳离子,其中两个、三个、五个和六个电子态表现出深刻的非绝热相互作用,并用于通过计算得到的绝热 PES 和 NACT 来计算非绝热 PES。该程序包在 GNU 通用公共许可证 v3.0(GPLv3)下发布,可以在 https://github.com/AdhikariLAB/ADT-Program 上找到,也可以在本文的支持信息中找到。