Suppr超能文献

改性明胶对瓣膜微组织的影响。

Impact of modified gelatin on valvular microtissues.

机构信息

Department of Human Structure and Repair, Tissue Engineering Group, Ghent University, Ghent, Belgium.

Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.

出版信息

J Tissue Eng Regen Med. 2019 May;13(5):771-784. doi: 10.1002/term.2825. Epub 2019 Apr 9.

Abstract

A significant challenge in the field of tissue engineering is the biofabrication of three-dimensional (3D) functional tissues with direct applications in organ-on-a-chip systems and future organ engineering. Multicellular valvular microtissues can be used as building blocks for the formation of larger scale valvular macrotissues. Yet, for the controlled biofabrication of 3D macrotissues with predefined complex shapes, directed assembly of microtissues through bioprinting is needed. This study aimed to investigate if modified gelatin is an instructive material for valvular microtissues. Valvular microtissues were encapsulated in modified gelatin hydrogels and cross-linked in the presence of a photoinitiator (Irgacure 2959 or VA-086). Hydrogel properties were determined, and valvular interstitial cell functions like phenotype, proliferation, migration, mRNA expression of extracellular matrix (ECM) molecules, ECM deposition, and tissue fusion were characterized by histochemical stainings and RT-qPCR. Encapsulated microtissues remained viable, produced heart valve-related ECM components, and remained in a quiescent state. However, encapsulation induced some changes in ECM formation and gene expression. Encapsulated microtissues showed lower remodeling capacity and increased expression levels of Col I/V, elastin, hyaluronan, biglycan, decorin, and Sox9 compared with nonencapsulated microtissues. Furthermore, this study demonstrated that proliferation, migration, and tissue fusion was more pronounced in softer gels. In general, we evidenced that modified gelatin is an instructive material for physiologically relevant valvular microtissues and provided a proof of concept for the formation of larger valvular tissue by assembling microtissues at random in soft gels.

摘要

组织工程领域的一个重大挑战是生物制造具有直接应用于器官芯片系统和未来器官工程的三维(3D)功能组织。多细胞瓣膜微组织可用作形成更大规模瓣膜宏观组织的构建块。然而,为了通过生物打印对具有预定义复杂形状的 3D 宏观组织进行受控生物制造,需要对微组织进行定向组装。本研究旨在研究改性明胶是否是瓣膜微组织的指导材料。将瓣膜微组织包封在改性明胶水凝胶中,并在光引发剂(Irgacure 2959 或 VA-086)存在下交联。测定水凝胶特性,并通过组织化学染色和 RT-qPCR 表征瓣膜间充质细胞的功能,如表型、增殖、迁移、细胞外基质(ECM)分子的 mRNA 表达、ECM 沉积和组织融合。包封的微组织保持存活,产生与心脏瓣膜相关的 ECM 成分,并保持静止状态。然而,包封诱导 ECM 形成和基因表达发生一些变化。与未包封的微组织相比,包封的微组织表现出较低的重塑能力和更高水平的 Col I/V、弹性蛋白、透明质酸、biglycan、decorin 和 Sox9 的表达。此外,本研究表明,在较软的凝胶中,增殖、迁移和组织融合更为明显。总的来说,我们证明改性明胶是一种用于生理相关瓣膜微组织的指导材料,并通过在软凝胶中随机组装微组织来形成更大的瓣膜组织提供了概念验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验