Eschweiler J, Migliorini F, Siebers H, Tingart M, Rath B
Klinik für Orthopädie, Universitätsklinikum Aachen, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland.
Zentrum für Orthopädische Chirurgie, Eifelklinik St. Brigida, Simmerath, Deutschland.
Orthopade. 2019 Apr;48(4):282-291. doi: 10.1007/s00132-019-03695-9.
Providing the hip with an endoprosthesis is one of the most common orthopedic interventions in Germany. The long-term success of such a procedure depends on the consideration of the loads due to muscle and joint forces in the planning and operative care. Patient-specific information of forces acting in vivo is not available to the surgeon in clinical routine today. This is where biomechanical modeling comes in.
A field of activity of biomechanical modeling is the development of methods and procedures for the precise analysis and simulation of endoprosthetic supplies. The aim was to show the possibilities of biomechanical modeling in total hip arthroplasty by means of two examples (sensitivity analysis and pre-/postoperative comparison of intervention outcome).
The results of the sensitivity analysis showed that by modeling the position of an optimal reconstruction of the hip rotational center can be found and the forces acting on the hip joint minimized. In the case of the pre-/postoperative comparison, it can be analyzed whether there has been a decrease or increase of load postoperatively, respectively, or whether the conditions are considered to be approximately equal to the preoperative situation. In the future, biomechanical modeling will be able to significantly improve long-term function by reducing wear and optimizing muscular function of the joint. Therefore, the routine use of validated musculoskeletal analysis in the context of standardized preoperative planning and intraoperative navigation-based implementation should be considered. Thus, validated analyses of musculoskeletal loads not only contribute to the extension of basic knowledge but also to the optimization of endoprosthetic care through their integration into the clinical workflow.
为髋关节植入假体是德国最常见的骨科手术之一。该手术的长期成功取决于在规划和手术护理中对肌肉和关节力所产生负荷的考虑。目前在临床常规中,外科医生无法获得患者体内作用力的特定信息。这正是生物力学建模发挥作用之处。
生物力学建模的一个活动领域是开发用于精确分析和模拟假体供应的方法和程序。目的是通过两个例子(敏感性分析以及干预结果的术前/术后比较)展示生物力学建模在全髋关节置换术中的可能性。
敏感性分析结果表明,通过对髋关节旋转中心的最佳重建位置进行建模,可以找到并使作用于髋关节的力最小化。在术前/术后比较的情况下,可以分别分析术后负荷是减少还是增加,或者情况是否被认为与术前大致相同。未来,生物力学建模将能够通过减少磨损和优化关节肌肉功能来显著改善长期功能。因此,应考虑在标准化术前规划和基于术中导航的实施过程中常规使用经过验证的肌肉骨骼分析。因此,经过验证的肌肉骨骼负荷分析不仅有助于扩展基础知识,还通过将其整合到临床工作流程中有助于优化假体护理。