Suppr超能文献

利用多重原位基因表达分析定量绘制单细胞中氧化应激反应对钴酸锂纳米颗粒的图谱。

Quantitative Mapping of Oxidative Stress Response to Lithium Cobalt Oxide Nanoparticles in Single Cells Using Multiplexed in Situ Gene Expression Analysis.

机构信息

Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States.

Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States.

出版信息

Nano Lett. 2019 Mar 13;19(3):1990-1997. doi: 10.1021/acs.nanolett.8b05172. Epub 2019 Feb 21.

Abstract

Engineered nanoparticles (NPs) can negatively impact biological systems through induced generation of reactive oxygen species (ROS). Overproduced ROS cause biochemical damage and hence need to be effectively buffered by a sophisticated cellular oxidative stress response system. How this complex cellular system, which consists of multiple enzymes, responds to NP-induced ROS is largely unknown. Here, we apply a single cell analysis to quantitatively evaluate 10 key ROS responsive genes simultaneously to understand how the cell prioritizes tasks and reallocates resources in response to NP-induced oxidative stress. We focus on rainbow trout gill epithelial cells-a model cell type for environmental exposure-and their response to the massive generation of ROS induced by lithium cobalt oxide (LCO) NPs, which are extensively used as cathode materials in lithium ion batteries. Using multiplexed fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) in single cells, we found a shift in the expression of oxidative stress response genes with initial increase in genes targeting superoxide species, followed by increase in genes targeting peroxide and hydroxyl species. In contrast, Li and Co, at concentrations expected to be shed from the NPs, did not induce ROS generation but showed a potent inhibition of transcription for all 10 stress response genes. Taken together, our findings suggest a "two-hit" model for LCO NP toxicity, where the intact LCO NPs induce high levels of ROS that elicit sequential engagement of stress response genes, while the released metal ions suppress the expression of these genes. Consequently, these effects synergistically drive the exposed cells to become more vulnerable to ROS stress and damage.

摘要

工程纳米颗粒(NPs)可以通过诱导活性氧(ROS)的产生对生物系统产生负面影响。过量产生的 ROS 会引起生化损伤,因此需要通过复杂的细胞氧化应激反应系统有效地缓冲。这个由多种酶组成的复杂细胞系统如何应对 NP 诱导的 ROS ,在很大程度上是未知的。在这里,我们应用单细胞分析技术同时定量评估 10 个关键的 ROS 反应基因,以了解细胞如何在应对 NP 诱导的氧化应激时优先处理任务和重新分配资源。我们关注的是虹鳟鱼鳃上皮细胞——一种用于环境暴露的模型细胞类型——及其对锂离子电池中广泛用作阴极材料的氧化钴锂(LCO)NPs 诱导的大量 ROS 产生的反应。我们使用基于多重波动定位成像的荧光原位杂交(fliFISH)在单细胞中发现,氧化应激反应基因的表达发生了变化,最初超氧化物种的靶向基因表达增加,随后过氧化物和羟基种的靶向基因表达增加。相比之下,在预计会从 NPs 中释放出来的 Li 和 Co 浓度下,并没有诱导 ROS 的产生,但对所有 10 个应激反应基因的转录都显示出强烈的抑制作用。总之,我们的研究结果表明 LCO NP 毒性的“两击模型”,完整的 LCO NPs 诱导高水平的 ROS,引发应激反应基因的顺序参与,而释放的金属离子则抑制这些基因的表达。因此,这些效应协同作用使暴露的细胞更容易受到 ROS 应激和损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验