Suppr超能文献

癌症纳米诊疗的新窗口:肿瘤生长和纳米治疗效果的无创眼部评估

Novel window for cancer nanotheranostics: non-invasive ocular assessments of tumor growth and nanotherapeutic treatment efficacy .

作者信息

Goswami Mayank, Wang Xinlei, Zhang Pengfei, Xiao Wenwu, Karlen Sarah J, Li Yuanpei, Zawadzki Robert J, Burns Marie E, Lam Kit S, Pugh Edward N

机构信息

EyePod Small Animal Ocular Imaging Laboratory, University of California, Davis, CA 95616, USA.

Currently with Department of Physics, Indian Institute of Technology Roorkee, Roorkee, 247667, India.

出版信息

Biomed Opt Express. 2018 Dec 11;10(1):151-166. doi: 10.1364/BOE.10.000151. eCollection 2019 Jan 1.

Abstract

In cancer research there is a fundamental need for animal models that allow the longitudinal visualization and quantification of tumor development, nanotherapeutic delivery, the tumor microenvironment including blood vessels, macrophages, fibroblasts, immune cells, and extracellular matrix, and the tissue response to treatment. To address this need, we developed a novel mouse ocular xenograft model. Green fluorescent protein (GFP) expressing human glioblastoma cells (between 500 and 10,000) were implanted into the subretinal space of immunodeficient mice (56 eyes). The resultant xenografts were imaged non-invasively with combined fluorescence scanning laser ophthalmoscopy (SLO) and volumetric optical coherence tomography (OCT) for a period up to several months. Most xenografts exhibited a latent phase followed by a stable or rapidly increasing volume, but about 1/3 underwent spontaneous remission. After prescribed growth, a population of tumors was treated with intravenously delivered doxorubicin-containing porphyrin and cholic acid-based nanoparticles ("nanodox"). Fluorescence resonance energy transfer (FRET) emission (doxorubicin → porphyrin) was used to localize nanodox in the xenografts, and 690 nm light exposure to activate it. Such photo-nanotherapy was highly effective in reducing tumor volume. Histopathology and flow cytometry revealed CD4 + and CD8 + immune cell infiltration of xenografts. Overall, the ocular model shows potential for examining the relationships between neoplastic growth, neovascularization and other features of the immune microenvironment, and for evaluating treatment response longitudinally .

摘要

在癌症研究中,迫切需要能够对肿瘤发展、纳米治疗递送、肿瘤微环境(包括血管、巨噬细胞、成纤维细胞、免疫细胞和细胞外基质)以及组织对治疗的反应进行纵向可视化和量化的动物模型。为满足这一需求,我们开发了一种新型小鼠眼部异种移植模型。将表达绿色荧光蛋白(GFP)的人胶质母细胞瘤细胞(500至10000个)植入免疫缺陷小鼠的视网膜下间隙(56只眼睛)。使用荧光扫描激光眼科显微镜(SLO)和体积光学相干断层扫描(OCT)联合对所得异种移植进行长达数月的无创成像。大多数异种移植表现出潜伏期,随后体积稳定或快速增加,但约1/3会自发缓解。在规定的生长后,一部分肿瘤用静脉注射含阿霉素的卟啉和胆酸基纳米颗粒(“纳米阿霉素”)进行治疗。利用荧光共振能量转移(FRET)发射(阿霉素→卟啉)来定位异种移植中的纳米阿霉素,并通过690nm光照射来激活它。这种光纳米疗法在减小肿瘤体积方面非常有效。组织病理学和流式细胞术显示异种移植中有CD4 +和CD8 +免疫细胞浸润。总体而言,该眼部模型在研究肿瘤生长、新生血管形成与免疫微环境其他特征之间的关系以及纵向评估治疗反应方面显示出潜力。

相似文献

1
Novel window for cancer nanotheranostics: non-invasive ocular assessments of tumor growth and nanotherapeutic treatment efficacy .
Biomed Opt Express. 2018 Dec 11;10(1):151-166. doi: 10.1364/BOE.10.000151. eCollection 2019 Jan 1.
2
Optic nerve head and fibre layer imaging for diagnosing glaucoma.
Cochrane Database Syst Rev. 2015 Nov 30;2015(11):CD008803. doi: 10.1002/14651858.CD008803.pub2.
4
Interventions for rosacea.
Cochrane Database Syst Rev. 2015 Apr 28;2015(4):CD003262. doi: 10.1002/14651858.CD003262.pub5.
5
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
Cochrane Database Syst Rev. 2011 Jul 6(7):CD008081. doi: 10.1002/14651858.CD008081.pub2.
7
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
9
Perioperative medications for preventing temporarily increased intraocular pressure after laser trabeculoplasty.
Cochrane Database Syst Rev. 2017 Feb 23;2(2):CD010746. doi: 10.1002/14651858.CD010746.pub2.
10
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

引用本文的文献

1
Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response.
Cancer Drug Resist. 2021;4(2):382-413. doi: 10.20517/cdr.2020.94. Epub 2021 Jun 19.
2
3
National Cancer Institute Alliance for nanotechnology in cancer-Catalyzing research and translation toward novel cancer diagnostics and therapeutics.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Nov;11(6):e1570. doi: 10.1002/wnan.1570. Epub 2019 Jul 1.
4
Progress in Multimodal Imaging: feature introduction.
Biomed Opt Express. 2019 Apr 1;10(4):2135-2140. doi: 10.1364/BOE.10.002135.

本文引用的文献

1
Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay.
PLoS One. 2017 Oct 17;12(10):e0186483. doi: 10.1371/journal.pone.0186483. eCollection 2017.
3
Targeted Treatment of Brain Metastases.
Curr Neurol Neurosci Rep. 2017 Apr;17(4):37. doi: 10.1007/s11910-017-0741-2.
4
In Vivo Bioluminescence Imaging for Longitudinal Monitoring of Inflammation in Animal Models of Uveitis.
Invest Ophthalmol Vis Sci. 2017 Mar 1;58(3):1521-1528. doi: 10.1167/iovs.16-20824.
5
Optical Coherence Tomography Angiography in Diabetes.
Curr Diab Rep. 2016 Dec;16(12):123. doi: 10.1007/s11892-016-0811-x.
6
Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap.
Cancer Res. 2016 Nov 1;76(21):6153-6158. doi: 10.1158/0008-5472.CAN-16-1260. Epub 2016 Sep 1.
7
Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse.
Clin Cancer Res. 2017 Jan 1;23(1):149-158. doi: 10.1158/1078-0432.CCR-16-0122. Epub 2016 Jul 25.
10
Pitfalls and Limitations of PET/CT in Brain Imaging.
Semin Nucl Med. 2015 Nov;45(6):541-51. doi: 10.1053/j.semnuclmed.2015.03.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验