Chowdari Ramesh Kumar, Agarwal Shilpa, Heeres Hero Jan
Chemical Engineering Department, ENTEG, Faculty of Mathematics and Natural Science, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km. 107 Carretera Tijuana-Ensenada, 22800 Ensenada, Baja California, Mexico.
ACS Sustain Chem Eng. 2019 Jan 22;7(2):2044-2055. doi: 10.1021/acssuschemeng.8b04411. Epub 2018 Dec 17.
The conversion of lignin to biofuels and biobased chemicals is currently attracting a lot of attention. We here report on the valorization of Kraft lignin by a catalytic hydrotreatment using Ni, Mo, and W phosphide catalysts supported on activated carbon in the absence of an external solvent. Experiments were carried out in a batch setup in the temperature range of 400-500 °C and 100 bar initial H pressure. The synthesized catalysts were characterized by X-ray diffraction, nitrogen physisorption, and transmission electron microscopy. The lignin oils were analyzed extensively by different techniques such as GPC, GC-MS-FID, C NMR, and elemental analysis. Two-dimensional gas chromatography (GC×GC-FID) was applied to identify and quantify distinct groups of compounds (aromatics, alkylphenolics, alkanes, etc.). Mo-based catalysts displayed higher activity compared to the W-containing catalysts. The reaction parameters such as the effect of reaction temperature, reaction time, and catalyst loading were studied for two catalysts (15MoP/AC and 20NiMoP/AC), and optimized reaction conditions regarding yields of monomeric components were identified (400 °C, 100 bar H at RT, 10 wt % catalyst loading on lignin intake). The highest monomer yield (45.7 wt % on lignin) was obtained for the 20NiMoP/AC (Ni 5.6 wt %, Mo 9.1 wt %, P 5.9 wt %) catalyst, which includes 25% alkylphenolics, 8.7% aromatics, and 9.9% alkanes. Our results clearly reveal that the phosphide catalysts are highly efficient catalyst to depolymerize the Kraft lignin to valuable biobased chemicals and outperform sulfided NiMo catalysts (monomer yield on lignin < 30 wt %).
目前,木质素转化为生物燃料和生物基化学品备受关注。在此,我们报道了在无外部溶剂的情况下,使用负载在活性炭上的镍、钼和钨磷化物催化剂对硫酸盐木质素进行催化加氢处理的增值过程。实验在间歇装置中进行,温度范围为400 - 500°C,初始氢气压力为100 bar。通过X射线衍射、氮物理吸附和透射电子显微镜对合成的催化剂进行了表征。采用凝胶渗透色谱法(GPC)、气相色谱 - 质谱 - 氢火焰离子化检测法(GC - MS - FID)、碳核磁共振(C NMR)和元素分析等不同技术对木质素油进行了广泛分析。应用二维气相色谱法(GC×GC - FID)来鉴定和定量不同的化合物组(芳烃、烷基酚、烷烃等)。与含钨催化剂相比,钼基催化剂表现出更高的活性。研究了两种催化剂(15MoP/AC和20NiMoP/AC)的反应温度、反应时间和催化剂负载量等反应参数,并确定了关于单体成分产率的优化反应条件(400°C,室温下100 bar氢气,基于木质素进料量10 wt%的催化剂负载量)。对于20NiMoP/AC(镍5.6 wt%,钼9.1 wt%,磷5.9 wt%)催化剂,获得了最高的单体产率(基于木质素为45.7 wt%),其中包括25%的烷基酚、8.7%的芳烃和9.9%的烷烃。我们的结果清楚地表明,磷化物催化剂是将硫酸盐木质素解聚为有价值的生物基化学品的高效催化剂,并且优于硫化镍钼催化剂(基于木质素的单体产率<30 wt%)。