Jessen Bjarke S, Gammelgaard Lene, Thomsen Morten R, Mackenzie David M A, Thomsen Joachim D, Caridad José M, Duegaard Emil, Watanabe Kenji, Taniguchi Takashi, Booth Timothy J, Pedersen Thomas G, Jauho Antti-Pekka, Bøggild Peter
Center for Nanostructured Graphene, Technical University of Denmark, Kongens Lyngby, Denmark.
DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark.
Nat Nanotechnol. 2019 Apr;14(4):340-346. doi: 10.1038/s41565-019-0376-3. Epub 2019 Feb 18.
Two-dimensional materials such as graphene allow direct access to the entirety of atoms constituting the crystal. While this makes shaping by lithography particularly attractive as a tool for band structure engineering through quantum confinement effects, edge disorder and contamination have so far limited progress towards experimental realization. Here, we define a superlattice in graphene encapsulated in hexagonal boron nitride, by etching an array of holes through the heterostructure with minimum feature sizes of 12-15 nm. We observe a magnetotransport regime that is distinctly different from the characteristic Landau fan of graphene, with a sizeable bandgap that can be tuned by a magnetic field. The measurements are accurately described by transport simulations and analytical calculations. Finally, we observe strong indications that the lithographically engineered band structure at the main Dirac point is cloned to a satellite peak that appears due to moiré interactions between the graphene and the encapsulating material.
二维材料(如石墨烯)能够直接接触构成晶体的所有原子。虽然这使得光刻成型作为一种通过量子限制效应进行能带结构工程的工具特别具有吸引力,但到目前为止,边缘无序和污染限制了实验实现方面的进展。在这里,我们通过蚀刻穿过异质结构的一系列孔(最小特征尺寸为12 - 15纳米),在封装于六方氮化硼中的石墨烯中定义了一个超晶格。我们观察到一种磁输运状态,它与石墨烯特有的朗道扇明显不同,具有一个可观的能隙,该能隙可通过磁场进行调节。这些测量结果通过输运模拟和解析计算得到了准确描述。最后,我们观察到有力迹象表明,在主要狄拉克点处通过光刻工程设计的能带结构被克隆到了一个由于石墨烯与封装材料之间的莫尔相互作用而出现的卫星峰上。