Suppr超能文献

金属 - 石墨烯接触周围的紧急腔结

Emergent Cavity Junction around Metal-on-Graphene Contacts.

作者信息

Zhao Yuhao, Kapfer Maëlle, Eisele Megan, Watanabe Kenji, Taniguchi Takashi, Zilberberg Oded, Jessen Bjarke S

机构信息

Institute for Theoretical Physics, ETH Zurich, Zurich 8093, Switzerland.

Department of Physics, Columbia University, New York, New York 10027, United States.

出版信息

ACS Nano. 2025 May 20;19(19):18156-18163. doi: 10.1021/acsnano.4c16191. Epub 2025 May 6.

Abstract

Harnessing graphene's electronic properties for practical applications requires a comprehensive understanding of its interfaces with metal contacts, which are essential for device integration. Traditionally, the metal-graphene (MG) interface has been considered straightforward, primarily affecting graphene's work function through doping mechanisms. However, as device dimensions shrink to the sub-micrometer scale, subtle interfacial phenomena become increasingly significant. Here, we investigate transport phenomena occurring at high-quality, sub-micrometer metal contacts on graphene. Through transport measurements, electrostatic simulations, and first-principles calculations, we demonstrate that the metal contact induces a localized n-doped radial cavity, defined cooperatively by the metal-induced electrostatic potential and Klein tunneling. This mechanism leads to quantized energy states and secondary resistance peaks as a function of graphene doping that decrease with increasing contact size. In the presence of a perpendicular magnetic field, the cavity hosts a distinct set of Landau levels, resulting in the formation of a secondary bulk interacting with the intrinsic graphene bulk. This interplay enables the direct observation of topological edge states arising from bulk-boundary correspondence. Our results provide an improved understanding of metal-graphene interfaces, highlighting fundamental properties of graphene relevant for graphene-based nanoelectronic devices.

摘要

要将石墨烯的电子特性应用于实际,需要全面了解其与金属触点的界面,这对于器件集成至关重要。传统上,金属-石墨烯(MG)界面被认为很简单,主要通过掺杂机制影响石墨烯的功函数。然而,随着器件尺寸缩小到亚微米尺度,微妙的界面现象变得越来越重要。在这里,我们研究了在高质量的亚微米石墨烯金属触点上发生的输运现象。通过输运测量、静电模拟和第一性原理计算,我们证明金属触点会诱导出一个局域化的n型掺杂径向腔,它由金属诱导的静电势和克莱因隧穿共同定义。这种机制导致了量子化的能态和作为石墨烯掺杂函数的二次电阻峰,且随着触点尺寸的增加而减小。在存在垂直磁场的情况下,该腔体会拥有一组独特的朗道能级,导致形成一个与本征石墨烯主体相互作用的二次主体。这种相互作用使得能够直接观察到由体-边界对应产生的拓扑边缘态。我们的结果增进了对金属-石墨烯界面的理解,突出了与基于石墨烯的纳米电子器件相关的石墨烯基本特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca22/12096424/e3f3452bb968/nn4c16191_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验