Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
Phys Chem Chem Phys. 2019 Feb 27;21(9):4879-4887. doi: 10.1039/c9cp00072k.
Modulating the electronic and magnetic properties of phosphorene is important for fabricating multi-functional electronic and spintronic devices. Employing density functional theory combined with the non-equilibrium Green's function, we systematically investigate the electronic, magnetic and transport properties of hydrogenated armchair phosphorene nanoribbons chemically modified by 3d transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co and Ni). With chemical adsorption of transition metal atoms, the phosphorene nanoribbons exhibit excellent spin-polarized transport properties. A giant magnetoresistance effect is found with Ti, Fe and Mn adsorption, in which ratios higher than 102 for the Ti and Mn cases, and 105 for the Fe case, are exhibited. Moreover, in the bias range of (-0.2 V, 0.2 V), the Ti, V, Mn and Fe-adsorbed nanoribbons with parallel spin configurations demonstrate a remarkable bias-independent spin filtering efficiency at about 100%, while the Fe and Mn-adsorbed nanoribbons with antiparallel spin configuration show a dual spin filtering effect. The spin-polarized electronic transport properties are closely related to the band structures. Remarkable spin-polarization of the current occurs when the dispersed and flat bands near the Fermi level originate from different spin orientations. The magnetic moments of transition metal adatoms on nanoribbons are reduced by 0.2-2 μB relative to the isolated atoms due to electron rearrangement and charge transfer, which results in various degrees of spin polarization. These results provide a fundamental understanding of the electronic, magnetic and transport properties of transition metal modified hydrogenated armchair phosphorene nanoribbons, and suggest a referential approach to manufacture spintronic devices based on phosphorene.
调控黑磷烯的电子和磁学性质对于构建多功能电子和自旋电子器件至关重要。本工作采用基于密度泛函理论的非平衡格林函数方法,系统研究了化学吸附 3d 过渡金属原子(Sc、Ti、V、Cr、Mn、Fe、Co 和 Ni)后,扶手椅型黑磷烯纳米带的电子、磁学和输运性质。通过过渡金属原子的化学吸附,磷烯纳米带表现出优异的自旋极化输运性质。研究发现 Ti、Fe 和 Mn 吸附的磷烯纳米带具有巨大的磁电阻效应,其中 Ti 和 Mn 吸附的磁电阻比高达 102 以上,Fe 吸附的磁电阻比高达 105 以上。此外,在(-0.2 V,0.2 V)偏压范围内,平行自旋构型的 Ti、V、Mn 和 Fe 吸附纳米带在约 100%的范围内表现出显著的偏压无关自旋过滤效率,而反平行自旋构型的 Fe 和 Mn 吸附纳米带则表现出双自旋过滤效应。自旋极化的电子输运性质与能带结构密切相关。当费米能级附近的弥散和平坦能带来自不同的自旋取向时,电流会出现显著的自旋极化。由于电子重新排布和电荷转移,过渡金属原子在纳米带表面的磁矩相对于孤立原子减小了 0.2-2μB,从而导致不同程度的自旋极化。这些结果为理解过渡金属修饰的氢化扶手椅型黑磷烯纳米带的电子、磁学和输运性质提供了基础,并为基于黑磷烯的自旋电子器件的制造提供了参考方法。