Jayapriya K, Mary N Ani Brown
Vin Solutions, Tirunelveli, Tamilnadu, India.
Anna University, Regional Campus, Tirunelveli, India.
Mol Biol Rep. 2019 Apr;46(2):2259-2272. doi: 10.1007/s11033-019-04680-3. Epub 2019 Feb 18.
Cell membrane proteins play an essentially significant function in manipulating the behaviour of cells. Examination of amino acid sequences can put forward useful insights into the tertiary structures of proteins and their biological functions. One of the important problems in amino acid analysis is the uncertainty to establish a digital coding system to better reflect the properties of amino acids and their degeneracy. In order to overcome the demerits, the proposed method is a novel representation of protein sequences that incorporates a new feature named 2-gram subgroup intra pattern. The functional types of membrane protein classification will be supportive to explain the biological functions of membrane proteins. For classification, Stacked Auto Encoder Deep learning method is applied. The performance of the proposed method is evaluated on two benchmark data sets. The results were experimented using the Self-consistency test, Accuracy, Specificity, Sensitivity, Mathew's correlation coefficient, Jackknife test and Independent data set are the tests in which the proposed method outperformed other existing techniques generally used in literatures.
细胞膜蛋白在调控细胞行为方面发挥着至关重要的作用。对氨基酸序列的研究能够为蛋白质的三级结构及其生物学功能提供有益的见解。氨基酸分析中的一个重要问题是难以建立一个能更好地反映氨基酸特性及其简并性的数字编码系统。为了克服这些缺点,所提出的方法是一种蛋白质序列的新颖表示法,它纳入了一个名为2-gram子群内部模式的新特征。膜蛋白分类的功能类型将有助于解释膜蛋白的生物学功能。对于分类,应用了堆叠自动编码器深度学习方法。在所提出的方法在两个基准数据集上进行了性能评估。使用自一致性测试、准确率、特异性、敏感性、马修相关系数、留一法测试和独立数据集进行了实验,在所提出的方法在这些测试中通常优于文献中普遍使用的其他现有技术。