Suppr超能文献

基于深度卷积神经场的蛋白质二级结构预测

Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

作者信息

Wang Sheng, Peng Jian, Ma Jianzhu, Xu Jinbo

机构信息

Toyota Technological Institute at Chicago, Chicago, IL.

Department of Human Genetics, University of Chicago, Chicago, IL.

出版信息

Sci Rep. 2016 Jan 11;6:18962. doi: 10.1038/srep18962.

Abstract

Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

摘要

蛋白质二级结构(SS)预测对于研究蛋白质的结构和功能至关重要。当仅将序列(概况)信息用作输入特征时,目前最佳的预测器可获得约80%的Q3准确率,这在过去十年中并未得到提高。在此,我们提出用于蛋白质SS预测的深度卷积神经场(DeepCNF)。DeepCNF是条件神经场(CNF)的深度学习扩展,而CNF是条件随机场(CRF)和浅层神经网络的集成。DeepCNF不仅可以通过深度层次结构对复杂的序列-结构关系进行建模,还可以对相邻SS标签之间的相互依赖性进行建模,因此它比CNF更强大。实验结果表明,在CASP和CAMEO测试蛋白质上,DeepCNF分别可获得约84%的Q3准确率、约85%的SOV分数和约72%的Q8准确率,大大优于当前流行的预测器。作为一个通用框架,DeepCNF可用于预测其他蛋白质结构属性,如接触数、无序区域和溶剂可及性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbe6/4707437/afc122377320/srep18962-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验