Graduate School of Advanced Mathematical Science, Meiji University, Nakano, Tokyo 164-8525, Japan and Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano, Tokyo 164-8525, Japan.
Phys Rev E. 2019 Jan;99(1-1):012208. doi: 10.1103/PhysRevE.99.012208.
The Belousov-Zhabotinsky (BZ) reaction is a famous experimental model for chemical oscillatory reaction and pattern formation. We herein study a diffusive coupled system of two oscillators with global feedback using the photosensitive BZ reaction both experimentally and theoretically. The coupled oscillator showed in-phase and antiphase oscillations depending on the strength of diffusive coupling and light feedback. Moreover, we analyzed our model to locate the bifurcational origin and found the reconnection of the bifurcation branches for antiphase oscillation, which was induced by the competition between global feedback and the diffusion effect.
别洛乌索夫-扎鲍廷斯基(BZ)反应是化学振荡反应和图案形成的著名实验模型。我们在此使用光敏感 BZ 反应在实验和理论上研究了一个具有全局反馈的两个振荡器的扩散耦合系统。耦合振荡器表现出同相和反相振荡,这取决于扩散耦合和光反馈的强度。此外,我们分析了我们的模型以确定分岔起源,并发现了反相振荡的分岔分支的重新连接,这是由全局反馈和扩散效应之间的竞争引起的。