Suppr超能文献

混合粗粒化模型的系统推导。

Systematic derivation of hybrid coarse-grained models.

机构信息

Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.

Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom.

出版信息

Phys Rev E. 2019 Jan;99(1-1):013303. doi: 10.1103/PhysRevE.99.013303.

Abstract

Molecular dynamics represents a key enabling technology for applications ranging from biology to the development of new materials. However, many real-world applications remain inaccessible to fully resolved simulations due to their unsustainable computational costs and must therefore rely on semiempirical coarse-grained models. Significant efforts have been devoted in the last decade towards improving the predictivity of these coarse-grained models and providing a rigorous justification of their use, through a combination of theoretical studies and data-driven approaches. One of the most promising research efforts is the (re)discovery of the Mori-Zwanzig projection as a generic, yet systematic, theoretical tool for deriving coarse-grained models. Despite its clean mathematical formulation and generality, there are still many open questions about its applicability and assumptions. In this work, we propose a detailed derivation of a hybrid multiscale system, generalizing and further investigating the approach developed in Español [Europhys. Lett. 88, 40008 (2009)10.1209/0295-5075/88/40008]. Issues such as the general coexistence of atoms (fully resolved degrees of freedom) and beads (larger coarse-grained units), the role of the fine-to-coarse mapping chosen, and the approximation of effective potentials are discussed. The theoretical discussion is supported by numerical simulations of a monodimensional nonlinear periodic benchmark system with an open-source parallel Julia code, easily extensible to arbitrary potential models and fine-to-coarse mapping functions. The results presented highlight the importance of introducing, in the macroscopic model, nonconstant fluctuating and dissipative terms, given by the Mori-Zwanzig approach, to correctly reproduce the reference fine-grained results, without requiring ad hoc calibration of interaction potentials and thermostats.

摘要

分子动力学是生物学到新材料开发等众多应用领域的关键使能技术。然而,由于其不可持续的计算成本,许多实际应用仍然无法进行完全解析的模拟,因此必须依赖于半经验的粗粒化模型。在过去的十年中,人们做出了巨大的努力,通过理论研究和数据驱动方法的结合,来提高这些粗粒化模型的预测能力,并为其使用提供严格的依据。最有前途的研究工作之一是重新发现 Mori-Zwanzig 投影作为一种通用的、系统的理论工具,用于推导粗粒化模型。尽管它具有干净的数学公式和通用性,但关于其适用性和假设仍然存在许多悬而未决的问题。在这项工作中,我们提出了一个混合多尺度系统的详细推导,推广和进一步研究了在 Español [Europhys. Lett. 88, 40008 (2009)10.1209/0295-5075/88/40008]中开发的方法。讨论了诸如原子(完全解析自由度)和珠粒(更大的粗粒化单元)的普遍共存、选择的细-粗映射的作用以及有效势的近似等问题。理论讨论得到了一个具有开源并行 Julia 代码的一维非线性周期基准系统的数值模拟的支持,该代码易于扩展到任意的势模型和细-粗映射函数。所提出的结果强调了在宏观模型中引入 Mori-Zwanzig 方法给出的非恒定波动和耗散项的重要性,以正确再现参考细粒度结果,而无需对相互作用势和热库进行特定的校准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验