School of Engineering, University of Waikato, Hamilton, New Zealand.
Waikato Hospital, Hamilton, New Zealand.
Phys Rev E. 2019 Jan;99(1-1):012318. doi: 10.1103/PhysRevE.99.012318.
Spinodal decomposition is a well-known pattern-forming mechanism in metallurgic alloys, semiconductor crystals, and colloidal gels. In metallurgy, if a heated sample of a homogeneous Zn-Al alloy is suddenly quenched below a critical temperature, then the sample can spontaneously precipitate into inhomogenous textures of Zn- and Al-rich regions with significantly altered material properties such as ductility and hardness. Here we report on our recent discovery that a two-dimensional model of the human cortex with inhibitory diffusion can, under particular homogeneous initial conditions, exhibit a form of nonconserved spinodal decomposition in which regions of the cortex self-organize into hexagonally distributed binary patches of activity and inactivity. Fine-scale patterns precipitate rapidly, and then the dynamics slows to render coarser-scale shapes which can ripen into a range of slowly evolving patterns including mazelike labyrinths, hexagonal islands and continents, nucleating "mitotic cells" which grow to a critical size then subdivide, and inverse nucleations in which quiescent islands are surrounded by a sea of activity. One interesting class of activity coalesces into a soliton-like narrow ribbon of depolarization that traverses the cortex at ∼4cm/s. We speculate that this may correspond to the thus far unexplained interictal waves of cortical activation that precede grand-mal seizure in an epileptic event. We note that spinodal decomposition is quite distinct from the Turing mechanism for symmetry breaking in cortex investigated in earlier work by the authors [Steyn-Ross et al., Phys. Rev. E 76, 011916 (2007)PLEEE81539-375510.1103/PhysRevE.76.011916].
旋节分解是冶金合金、半导体晶体和胶体凝胶中一种熟知的形成图案的机制。在冶金学中,如果将均匀 Zn-Al 合金的加热样品突然淬火到低于临界温度以下,那么样品会自发地沉淀成 Zn 和 Al 富区域的不均匀纹理,这些区域的材料性能(如延展性和硬度)会发生显著改变。在这里,我们报告了最近的一项发现,即在特定的均匀初始条件下,具有抑制扩散的二维人类皮质模型可以表现出一种非守恒旋节分解形式,其中皮质区域自组织成活动和不活动的六边形分布的二元斑块。精细图案迅速沉淀,然后动力学减缓,呈现出较粗尺度的形状,这些形状可以成熟为一系列缓慢演化的图案,包括迷宫样的迷宫、六边形的岛屿和大陆、核分裂“有丝分裂细胞”,这些细胞生长到临界大小然后分裂,以及反向核化,其中静止的岛屿被活动的海洋包围。一类有趣的活动会合并成一条类似孤子的去极化窄带,以约 4cm/s 的速度穿过皮质。我们推测,这可能与迄今为止尚未解释的皮质激活的癫痫发作前的间发性波相对应。我们注意到,旋节分解与作者在早期工作中研究的皮质中用于打破对称的 Turing 机制有很大的不同[Steyn-Ross 等人,Phys. Rev. E 76, 011916 (2007)PLEEE81539-375510.1103/PhysRevE.76.011916]。