Suppr超能文献

探索-开发权衡决定了受适应度波动影响的群体的表型最优分布。

Exploration-exploitation tradeoffs dictate the optimal distributions of phenotypes for populations subject to fitness fluctuations.

机构信息

Soft and Living Matter Laboratory, CNR-NANOTEC, 00185 Rome, Italy.

Italian Institute for Genomic Medicine, 10126 Turin, Italy.

出版信息

Phys Rev E. 2019 Jan;99(1-1):012417. doi: 10.1103/PhysRevE.99.012417.

Abstract

We study a minimal model for the growth of a phenotypically heterogeneous population of cells subject to a fluctuating environment in which they can replicate (by exploiting available resources) and modify their phenotype within a given landscape (thereby exploring novel configurations). The model displays an exploration-exploitation trade-off whose specifics depend on the statistics of the environment. Most notably, the phenotypic distribution corresponding to maximum population fitness (i.e., growth rate) requires a nonzero exploration rate when the magnitude of environmental fluctuations changes randomly over time, while a purely exploitative strategy turns out to be optimal in two-state environments, independently of the statistics of switching times. We obtain analytical insight into the limiting cases of very fast and very slow exploration rates by directly linking population growth to the features of the environment.

摘要

我们研究了一个最小模型,用于描述在一个随时间变化的环境中,表现出表型异质性的细胞群体的生长情况。在这个环境中,细胞可以复制(利用可用资源)并在给定的景观中改变其表型(从而探索新的构型)。该模型显示了一种探索-开发的权衡,其具体细节取决于环境的统计特性。最值得注意的是,当环境波动的幅度随时间随机变化时,对应于最大种群适应性(即增长率)的表型分布需要一个非零的探索率,而在两态环境中,纯粹的开发策略无论转换时间的统计特性如何,都是最优的。我们通过将种群增长与环境特征直接联系起来,获得了对非常快速和非常缓慢探索率的限制情况的分析见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验