Suppr超能文献

IFN-γ 预先刺激小胶质细胞可减缓原位神经元的γ 振荡。

Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ.

机构信息

Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany.

Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany;

出版信息

Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4637-4642. doi: 10.1073/pnas.1813562116. Epub 2019 Feb 19.

Abstract

Type II IFN (IFN-γ) is a proinflammatory T lymphocyte cytokine that serves in priming of microglia-resident CNS macrophages-during the complex microglial activation process under pathological conditions. Priming generally permits an exaggerated microglial response to a secondary inflammatory stimulus. The impact of primed microglia on physiological neuronal function in intact cortical tissue (in situ) is widely unknown, however. We explored the effects of chronic IFN-γ exposure on microglia in hippocampal slice cultures, i.e., postnatal parenchyma lacking leukocyte infiltration (adaptive immunity). We focused on fast neuronal network waves in the gamma-band (30-70 Hz). Such gamma oscillations are fundamental to higher brain functions, such as perception, attention, and memory, and are exquisitely sensitive to metabolic and oxidative stress. IFN-γ induced substantial morphological changes and cell population expansion in microglia as well as moderate up-regulation of activation markers, MHC-II, CD86, IL-6, and inducible nitric oxide synthase (iNOS), but not TNF-α. Cytoarchitecture and morphology of pyramidal neurons and parvalbumin-positive inhibitory interneurons were well-preserved. Notably, gamma oscillations showed a specific decline in frequency of up to 8 Hz, which was not mimicked by IFN-α or IL-17 exposure. The rhythm disturbance was caused by moderate microglial nitric oxide (NO) release demonstrated by pharmacological microglia depletion and iNOS inhibition. In conclusion, IFN-γ priming induces substantial proliferation and moderate activation of microglia that is capable of slowing neural information processing. This mechanism might contribute to cognitive impairment in chronic brain disease featuring elevated IFN-γ levels, blood-brain barrier leakage, and/or T cell infiltration, well before neurodegeneration occurs.

摘要

II 型干扰素 (IFN-γ) 是一种促炎 T 淋巴细胞细胞因子,在病理条件下,它在小胶质细胞驻留的中枢神经系统巨噬细胞的复杂激活过程中发挥作用,为其提供“启动”。“启动”通常允许小胶质细胞对二次炎症刺激产生过度反应。然而,在完整的皮质组织(原位)中,“启动”的小胶质细胞对生理神经元功能的影响却知之甚少。我们在海马切片培养物中研究了慢性 IFN-γ 暴露对小胶质细胞的影响,即缺乏白细胞浸润的产后实质(适应性免疫)。我们专注于伽马波段(30-70 Hz)的快速神经元网络波。这种伽马振荡是大脑高级功能(如感知、注意力和记忆)的基础,对代谢和氧化应激极为敏感。IFN-γ 诱导小胶质细胞发生显著的形态变化和细胞群体扩张,以及适度上调激活标志物 MHC-II、CD86、IL-6 和诱导型一氧化氮合酶(iNOS),但不包括 TNF-α。锥体神经元和钙蛋白阳性抑制性中间神经元的细胞结构和形态保持完好。值得注意的是,伽马振荡的频率出现了特定的下降,最多可达 8 Hz,这一现象不能通过 IFN-α 或 IL-17 暴露来模拟。节律紊乱是由适度的小胶质细胞一氧化氮(NO)释放引起的,这种释放可通过药理学方法耗尽小胶质细胞和抑制 iNOS 来证明。总之,IFN-γ 启动诱导了小胶质细胞的大量增殖和适度激活,从而降低了神经信息处理速度。这种机制可能导致慢性脑疾病中出现认知障碍,这些疾病的特点是 IFN-γ 水平升高、血脑屏障渗漏和/或 T 细胞浸润,而且在发生神经退行性变之前就已经出现。

相似文献

1
Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4637-4642. doi: 10.1073/pnas.1813562116. Epub 2019 Feb 19.
2
3
TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):212-7. doi: 10.1073/pnas.1513853113. Epub 2015 Dec 22.
4
TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner.
Brain Behav Immun. 2021 Aug;96:80-91. doi: 10.1016/j.bbi.2021.05.013. Epub 2021 May 17.
6
Priming of microglia by type II interferon is lasting and resistant to modulation by interleukin-10 in situ.
J Neuroimmunol. 2022 Jul 15;368:577881. doi: 10.1016/j.jneuroim.2022.577881. Epub 2022 Apr 28.
7
Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ.
Brain Behav Immun. 2020 Aug;88:802-814. doi: 10.1016/j.bbi.2020.05.052. Epub 2020 May 21.
8
Interferon γ: a master cytokine in microglia-mediated neural network dysfunction and neurodegeneration.
Trends Neurosci. 2022 Dec;45(12):913-927. doi: 10.1016/j.tins.2022.10.007. Epub 2022 Oct 22.
10
Priming of hippocampal microglia by IFN-γ/STAT1 pathway impairs social memory in mice.
Int Immunopharmacol. 2024 Jun 15;134:112191. doi: 10.1016/j.intimp.2024.112191. Epub 2024 May 16.

引用本文的文献

3
Large-scale HLA immunopeptidome and interactome profiling in microglia.
bioRxiv. 2025 Apr 26:2025.04.23.650327. doi: 10.1101/2025.04.23.650327.
4
Loss of insulin signaling in microglia impairs cellular uptake of Aβ and neuroinflammatory response exacerbating AD-like neuropathology.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2501527122. doi: 10.1073/pnas.2501527122. Epub 2025 May 19.
5
CSF cytokine, chemokine and injury biomarker profile of glial fibrillary acidic protein (GFAP) autoimmunity.
Ann Clin Transl Neurol. 2025 Apr;12(4):855-860. doi: 10.1002/acn3.52305. Epub 2025 Jan 27.
6
Mass-Guided Single-Cell MALDI Imaging of Low-Mass Metabolites Reveals Cellular Activation Markers.
Adv Sci (Weinh). 2025 Feb;12(5):e2410506. doi: 10.1002/advs.202410506. Epub 2024 Dec 12.
7
A microglia-containing cerebral organoid model to study early life immune challenges.
Brain Behav Immun. 2025 Jan;123:1127-1146. doi: 10.1016/j.bbi.2024.11.008. Epub 2024 Nov 3.
8
Neonatal overfeeding attenuates microgliosis and hippocampal damage in an infant rat model of pneumococcal meningitis.
Front Immunol. 2024 Oct 14;15:1429157. doi: 10.3389/fimmu.2024.1429157. eCollection 2024.
9
Microglial priming by IFN-γ involves STAT1-mediated activation of the NLRP3 inflammasome.
CNS Neurosci Ther. 2024 Oct;30(10):e70061. doi: 10.1111/cns.70061.
10
Profiling migration of human monocytes in response to chemotactic and barotactic guidance cues.
Cell Rep Methods. 2024 Sep 16;4(9):100846. doi: 10.1016/j.crmeth.2024.100846. Epub 2024 Sep 5.

本文引用的文献

1
Gamma oscillations in cognitive disorders.
Curr Opin Neurobiol. 2018 Oct;52:182-187. doi: 10.1016/j.conb.2018.07.009. Epub 2018 Aug 16.
2
Microglia have a more extensive and divergent response to interferon-α compared with astrocytes.
Glia. 2018 Oct;66(10):2058-2078. doi: 10.1002/glia.23460. Epub 2018 Jul 27.
3
TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury.
EMBO Rep. 2017 Jul;18(7):1186-1198. doi: 10.15252/embr.201743922. Epub 2017 May 8.
4
A new fate mapping system reveals context-dependent random or clonal expansion of microglia.
Nat Neurosci. 2017 Jun;20(6):793-803. doi: 10.1038/nn.4547. Epub 2017 Apr 17.
5
Microglia Function in the Central Nervous System During Health and Neurodegeneration.
Annu Rev Immunol. 2017 Apr 26;35:441-468. doi: 10.1146/annurev-immunol-051116-052358. Epub 2017 Feb 9.
6
The role of peripheral immune cells in the CNS in steady state and disease.
Nat Neurosci. 2017 Feb;20(2):136-144. doi: 10.1038/nn.4475. Epub 2017 Jan 16.
7
Infectious immunity in the central nervous system and brain function.
Nat Immunol. 2017 Feb;18(2):132-141. doi: 10.1038/ni.3656. Epub 2017 Jan 16.
8
Young microglia restore amyloid plaque clearance of aged microglia.
EMBO J. 2017 Mar 1;36(5):583-603. doi: 10.15252/embj.201694591. Epub 2016 Dec 21.
9
Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.
PLoS One. 2016 Sep 6;11(9):e0162497. doi: 10.1371/journal.pone.0162497. eCollection 2016.
10
How neuroinflammation contributes to neurodegeneration.
Science. 2016 Aug 19;353(6301):777-83. doi: 10.1126/science.aag2590.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验