Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany.
Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany;
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4637-4642. doi: 10.1073/pnas.1813562116. Epub 2019 Feb 19.
Type II IFN (IFN-γ) is a proinflammatory T lymphocyte cytokine that serves in priming of microglia-resident CNS macrophages-during the complex microglial activation process under pathological conditions. Priming generally permits an exaggerated microglial response to a secondary inflammatory stimulus. The impact of primed microglia on physiological neuronal function in intact cortical tissue (in situ) is widely unknown, however. We explored the effects of chronic IFN-γ exposure on microglia in hippocampal slice cultures, i.e., postnatal parenchyma lacking leukocyte infiltration (adaptive immunity). We focused on fast neuronal network waves in the gamma-band (30-70 Hz). Such gamma oscillations are fundamental to higher brain functions, such as perception, attention, and memory, and are exquisitely sensitive to metabolic and oxidative stress. IFN-γ induced substantial morphological changes and cell population expansion in microglia as well as moderate up-regulation of activation markers, MHC-II, CD86, IL-6, and inducible nitric oxide synthase (iNOS), but not TNF-α. Cytoarchitecture and morphology of pyramidal neurons and parvalbumin-positive inhibitory interneurons were well-preserved. Notably, gamma oscillations showed a specific decline in frequency of up to 8 Hz, which was not mimicked by IFN-α or IL-17 exposure. The rhythm disturbance was caused by moderate microglial nitric oxide (NO) release demonstrated by pharmacological microglia depletion and iNOS inhibition. In conclusion, IFN-γ priming induces substantial proliferation and moderate activation of microglia that is capable of slowing neural information processing. This mechanism might contribute to cognitive impairment in chronic brain disease featuring elevated IFN-γ levels, blood-brain barrier leakage, and/or T cell infiltration, well before neurodegeneration occurs.
II 型干扰素 (IFN-γ) 是一种促炎 T 淋巴细胞细胞因子,在病理条件下,它在小胶质细胞驻留的中枢神经系统巨噬细胞的复杂激活过程中发挥作用,为其提供“启动”。“启动”通常允许小胶质细胞对二次炎症刺激产生过度反应。然而,在完整的皮质组织(原位)中,“启动”的小胶质细胞对生理神经元功能的影响却知之甚少。我们在海马切片培养物中研究了慢性 IFN-γ 暴露对小胶质细胞的影响,即缺乏白细胞浸润的产后实质(适应性免疫)。我们专注于伽马波段(30-70 Hz)的快速神经元网络波。这种伽马振荡是大脑高级功能(如感知、注意力和记忆)的基础,对代谢和氧化应激极为敏感。IFN-γ 诱导小胶质细胞发生显著的形态变化和细胞群体扩张,以及适度上调激活标志物 MHC-II、CD86、IL-6 和诱导型一氧化氮合酶(iNOS),但不包括 TNF-α。锥体神经元和钙蛋白阳性抑制性中间神经元的细胞结构和形态保持完好。值得注意的是,伽马振荡的频率出现了特定的下降,最多可达 8 Hz,这一现象不能通过 IFN-α 或 IL-17 暴露来模拟。节律紊乱是由适度的小胶质细胞一氧化氮(NO)释放引起的,这种释放可通过药理学方法耗尽小胶质细胞和抑制 iNOS 来证明。总之,IFN-γ 启动诱导了小胶质细胞的大量增殖和适度激活,从而降低了神经信息处理速度。这种机制可能导致慢性脑疾病中出现认知障碍,这些疾病的特点是 IFN-γ 水平升高、血脑屏障渗漏和/或 T 细胞浸润,而且在发生神经退行性变之前就已经出现。