Suppr超能文献

利用电子病历衡量临床药物-药物相似性。

Measure clinical drug-drug similarity using Electronic Medical Records.

机构信息

College of Biomedical Engineering and Instrument Science, Zhejiang University, China.

Department of Pharmacy, Shanxi Dayi Hospital, China.

出版信息

Int J Med Inform. 2019 Apr;124:97-103. doi: 10.1016/j.ijmedinf.2019.02.003. Epub 2019 Feb 11.

Abstract

OBJECTIVE

Quantitative measurement of clinical drug-drug similarity has many potential applications in assessing medication therapy similarity and patient similarity. Currently, most of the methods to measure drug-drug similarity were not directly obtained from clinical data and cannot cover clinical drugs. We sought to propose a computational approach to measure clinical drug-drug similarity based on the Electronic Medical Record (EMR) system.

MATERIALS AND METHODS

We used the Bonferroni-corrected hypergeometric P value to generate statistically significant associations between drugs and diagnoses in an EMR dataset which contained 812 554 medication records and 339 269 discharge diagnosis codes. Then the Jaccard similarity coefficient was used to measure the distances between drugs. A k-means based bootstrapping method was proposed to generate drug clusters.

RESULTS

The similarity matrix contains total 1210 clinical drugs used in the hospital was calculated. The clinical drug-drug similarity shows significant correlation with the chemical similarity of drugs and literature-based drug-drug similarity but with unique features. Based on this drug-drug similarity, 36 clinical drug clusters most of which were related to specific clinical conditions were generated. Detail of this drug clusters available at http://kb4md.org:4000/drugcluster.

DISCUSSION

This method provided a whole new view of the relationship among clinical drugs. Furthermore, it has the potential to evaluate the effectiveness of drug knowledge translation and provide quantitative knowledge resources for many applications such as treatment comparisons and patient similarity.

CONCLUSION

We proposed a clinical drug-drug similarity measurement that generated from clinical practice data and covers all clinical drugs.

摘要

目的

临床药物相似性的定量测量在评估药物治疗相似性和患者相似性方面具有许多潜在的应用。目前,大多数测量药物相似性的方法不是直接从临床数据中获得的,并且不能涵盖临床药物。我们试图提出一种基于电子病历(EMR)系统的计算方法来测量临床药物相似性。

材料和方法

我们使用校正后的 Bonferroni 超几何 P 值来生成 EMR 数据集(其中包含 812554 个用药记录和 339269 个出院诊断代码)中药物与诊断之间的统计学显著关联。然后使用 Jaccard 相似系数来测量药物之间的距离。提出了一种基于 k-means 的自举方法来生成药物聚类。

结果

计算了包含在医院中使用的 1210 种临床药物的相似度矩阵。临床药物相似性与药物的化学相似性和文献药物相似性显著相关,但具有独特的特征。基于这种药物相似性,生成了 36 个临床药物聚类,其中大多数与特定的临床情况有关。这些药物聚类的详细信息可在 http://kb4md.org:4000/drugcluster 上获得。

讨论

这种方法提供了一种全新的视角来看待临床药物之间的关系。此外,它具有评估药物知识转化效果的潜力,并为许多应用提供定量的知识资源,如治疗比较和患者相似性。

结论

我们提出了一种从临床实践数据中生成并涵盖所有临床药物的临床药物相似性测量方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验