College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.
Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
Comput Methods Programs Biomed. 2022 Oct;225:107033. doi: 10.1016/j.cmpb.2022.107033. Epub 2022 Jul 20.
Personalized medicine requires the patient similarity analysis for providing specific treatments tailed for each patient. However, the patient similarity analysis in personalized clinical scenarios encounters challenges, which are twofold. First, heterogeneous and multi-type data are usually recorded to Electronic Health Records (EHRs) during the course of admissions, which makes it difficult to measure the patient similarity. Second, disease progression manifests diverse disease states at different times, which brings sequential complexity to dynamically retrieve similar patients' sequences.
To overcome the above-mentioned challenges, we propose a novel dynamic patient similarity analysis model based on deep learning. Specifically, the proposed model embeds the multi-type and heterogeneous data into hidden representations with a specially designed embedding and attention module. Thereafter, the proposed model retrieves similar patients' sequences based on these hidden representations in a dynamic manner. More importantly, we adopt two clinical tasks, i.e., diagnosis prediction and medication recommendation, to validate the effectiveness of the proposed model. It is worth noticing that the proposed model integrates a drug-drug interaction (DDI) knowledge graph in the medication recommendation task to reduce adverse reactions caused by combinational treatments, such that a more rational strategy can be realized. We evaluate our proposed model using the critical care database MIMIC-III, which includes 5,430 patients covering 14,096 clinical visits.
The proposed model outperforms several state-of-the-art methods. For diagnosis prediction, the average PR-AUC score of the proposed model reaches 0.6200, which is significantly higher than that of the baseline models (0.2497∼0.5407). Meanwhile, for medication recommendation, the average PR-AUC of the proposed model is 0.6682 (Jaccard: 0.4070; F1: 0.5672; Recall: 0.7832) whereas the K-nearest model can only reach 0.3805 (Jaccard: 0.3911; F1: 0.5465; Recall: 0.5705). In addition, our proposed model achieves a lower DDI rate.
We propose a novel dynamic patient similarity analysis model, which can be implemented into a decision support system for clinical tasks including diagnosis prediction, surgical procedure selection, medication recommendation, etc. Also, the proposed model serves as an explainable protocol in clinical practice thanks to its analogy to real clinical reasoning where a doctor diagnoses diseases and prescribes medications according to the previous cured patients empirically.
个性化医学需要对患者进行相似性分析,以便为每位患者提供量身定制的治疗方案。然而,在个性化临床场景中进行患者相似性分析时会遇到两个挑战。首先,在入院过程中,通常会将异构的多类型数据记录到电子健康记录 (EHR) 中,这使得很难衡量患者的相似性。其次,疾病的进展会在不同的时间表现出不同的疾病状态,这给动态检索相似患者序列带来了序列复杂性。
为了克服上述挑战,我们提出了一种基于深度学习的新型动态患者相似性分析模型。具体来说,所提出的模型使用专门设计的嵌入和注意力模块将多类型和异构数据嵌入到隐藏表示中。此后,所提出的模型以动态方式基于这些隐藏表示来检索相似患者的序列。更重要的是,我们采用了两个临床任务,即诊断预测和用药推荐,来验证所提出模型的有效性。值得注意的是,在所提出的用药推荐任务中,我们整合了药物-药物相互作用 (DDI) 知识图谱,以减少联合治疗引起的不良反应,从而实现更合理的治疗策略。我们使用包含 5430 名患者、14096 次临床就诊的 MIMIC-III 关键护理数据库来评估我们提出的模型。
所提出的模型优于几种最先进的方法。对于诊断预测,所提出模型的平均 PR-AUC 得分达到 0.6200,明显高于基线模型(0.2497∼0.5407)。同时,对于用药推荐,所提出模型的平均 PR-AUC 为 0.6682(Jaccard:0.4070;F1:0.5672;Recall:0.7832),而 K-最近模型只能达到 0.3805(Jaccard:0.3911;F1:0.5465;Recall:0.5705)。此外,我们提出的模型的药物-药物相互作用 (DDI) 发生率更低。
我们提出了一种新的动态患者相似性分析模型,可将其应用于包括诊断预测、手术程序选择、用药推荐等临床任务的决策支持系统中。此外,由于该模型类似于医生根据以往治愈患者的经验来诊断疾病和开处方的实际临床推理,因此该模型也可以作为一种临床实践中的可解释协议。