文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于基因表达数据的机器学习分析揭示了软组织肉瘤的新型诊断和预后生物标志物,并确定了治疗靶点。

Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas.

机构信息

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.

Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

PLoS Comput Biol. 2019 Feb 20;15(2):e1006826. doi: 10.1371/journal.pcbi.1006826. eCollection 2019 Feb.


DOI:10.1371/journal.pcbi.1006826
PMID:30785874
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6398862/
Abstract

Based on morphology it is often challenging to distinguish between the many different soft tissue sarcoma subtypes. Moreover, outcome of disease is highly variable even between patients with the same disease. Machine learning on transcriptome sequencing data could be a valuable new tool to understand differences between and within entities. Here we used machine learning analysis to identify novel diagnostic and prognostic markers and therapeutic targets for soft tissue sarcomas. Gene expression data was used from the Cancer Genome Atlas, the Genotype-Tissue Expression project and the French Sarcoma Group. We identified three groups of tumors that overlap in their molecular profiles as seen with unsupervised t-Distributed Stochastic Neighbor Embedding clustering and a deep neural network. The three groups corresponded to subtypes that are morphologically overlapping. Using a random forest algorithm, we identified novel diagnostic markers for soft tissue sarcoma that distinguished between synovial sarcoma and MPNST, and that we validated using qRT-PCR in an independent series. Next, we identified prognostic genes that are strong predictors of disease outcome when used in a k-nearest neighbor algorithm. The prognostic genes were further validated in expression data from the French Sarcoma Group. One of these, HMMR, was validated in an independent series of leiomyosarcomas using immunohistochemistry on tissue micro array as a prognostic gene for disease-free interval. Furthermore, reconstruction of regulatory networks combined with data from the Connectivity Map showed, amongst others, that HDAC inhibitors could be a potential effective therapy for multiple soft tissue sarcoma subtypes. A viability assay with two HDAC inhibitors confirmed that both leiomyosarcoma and synovial sarcoma are sensitive to HDAC inhibition. In this study we identified novel diagnostic markers, prognostic markers and therapeutic leads from multiple soft tissue sarcoma gene expression datasets. Thus, machine learning algorithms are powerful new tools to improve our understanding of rare tumor entities.

摘要

基于形态学,通常很难区分许多不同的软组织肉瘤亚型。此外,即使是同一疾病的患者,疾病的预后也存在很大差异。基于转录组测序数据的机器学习可能是理解实体之间和内部差异的一种有价值的新工具。在这里,我们使用机器学习分析来识别软组织肉瘤的新诊断和预后标志物以及治疗靶点。使用来自癌症基因组图谱、基因型-组织表达项目和法国肉瘤组的基因表达数据。我们使用无监督 t 分布随机邻域嵌入聚类和深度神经网络识别出在分子谱上重叠的三组肿瘤。这三组肿瘤与形态上重叠的亚型相对应。使用随机森林算法,我们鉴定出用于软组织肉瘤的新型诊断标志物,可区分滑膜肉瘤和 MPNST,并使用 qRT-PCR 在独立系列中进行验证。接下来,我们使用 k-最近邻算法鉴定出预后基因,这些基因是疾病结果的强预测因子。预后基因在法国肉瘤组的表达数据中进一步验证。其中之一,HMMR,在独立的平滑肌肉瘤系列中使用组织微阵列的免疫组织化学进行验证,作为无病间隔的预后基因。此外,监管网络的重建与连接图谱的数据相结合,表明除其他外,HDAC 抑制剂可能是多种软组织肉瘤亚型的潜在有效治疗方法。使用两种 HDAC 抑制剂进行的活力测定证实,平滑肌肉瘤和滑膜肉瘤均对 HDAC 抑制敏感。在这项研究中,我们从多个软组织肉瘤基因表达数据集确定了新型诊断标志物、预后标志物和治疗靶点。因此,机器学习算法是提高我们对罕见肿瘤实体理解的强大新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/6398862/3d7c01f03ea2/pcbi.1006826.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/6398862/943800913d8f/pcbi.1006826.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/6398862/56bf6caab085/pcbi.1006826.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/6398862/8432b12d5d53/pcbi.1006826.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/6398862/3d7c01f03ea2/pcbi.1006826.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/6398862/943800913d8f/pcbi.1006826.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/6398862/56bf6caab085/pcbi.1006826.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/6398862/8432b12d5d53/pcbi.1006826.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/6398862/3d7c01f03ea2/pcbi.1006826.g004.jpg

相似文献

[1]
Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas.

PLoS Comput Biol. 2019-2-20

[2]
Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential.

BMC Genomics. 2007-3-14

[3]
Development and validation of an immune gene-set based prognostic signature for soft tissue sarcoma.

BMC Cancer. 2021-2-8

[4]
MicroRNA profiling of primary high-grade soft tissue sarcomas.

Genes Chromosomes Cancer. 2012-7-18

[5]
Fluorescence in Situ Hybridization (FISH) for Differential Diagnosis of Soft Tissue Sarcomas.

Asian Pac J Cancer Prev. 2018-3-27

[6]
Identification of a survival-related signature for sarcoma patients through integrated transcriptomic and proteomic profiling analyses.

Gene. 2020-8-31

[7]
Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma.

BMC Cancer. 2021-8-9

[8]
The Genomic Grade Index predicts postoperative clinical outcome in patients with soft-tissue sarcoma.

Ann Oncol. 2018-2-1

[9]
T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death-ligand 1 expression in patients with soft tissue sarcomas.

Cancer. 2017-9-1

[10]
microRNAs and Soft Tissue Sarcomas.

Adv Exp Med Biol. 2015

引用本文的文献

[1]
Divergent therapeutic and prognostic impacts of immunogenic features in undifferentiated pleomorphic sarcoma and myxofibrosarcoma.

Cancer Immunol Immunother. 2025-7-2

[2]
The use of heart rate variability, oxygen saturation, and anthropometric data with machine learning to predict the presence and severity of obstructive sleep apnea.

Front Cardiovasc Med. 2025-3-14

[3]
Identification of novel diagnostic and prognostic microRNAs in sarcoma on TCGA dataset: bioinformatics and machine learning approach.

Sci Rep. 2025-3-4

[4]
Predicting Outcomes of Preterm Neonates Post Intraventricular Hemorrhage.

Int J Mol Sci. 2024-9-25

[5]
Exploring the Sublethal Impacts of Cu and Zn on Daphnia magna: a transcriptomic perspective.

BMC Genomics. 2024-8-19

[6]
Region-specific gene expression profiling of early mouse mandible uncovered SATB2 as a key molecule for teeth patterning.

Sci Rep. 2024-8-6

[7]
Identification of Hub Genes in Liver Hepatocellular Carcinoma Based on Weighted Gene Co-expression Network Analysis.

Biochem Genet. 2024-4-29

[8]
Using meta-analysis and machine learning to investigate the transcriptional response of immune cells to Leishmania infection.

PLoS Negl Trop Dis. 2024-1

[9]
A differential diagnosis between uterine leiomyoma and leiomyosarcoma using transcriptome analysis.

BMC Cancer. 2023-12-8

[10]
Filter and Wrapper Stacking Ensemble (FWSE): a robust approach for reliable biomarker discovery in high-dimensional omics data.

Brief Bioinform. 2023-9-22

本文引用的文献

[1]
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics.

Cell. 2018-4-5

[2]
DNA methylation-based classification of central nervous system tumours.

Nature. 2018-3-14

[3]
Histone deacetylase inhibitor ITF2357 leads to apoptosis and enhances doxorubicin cytotoxicity in preclinical models of human sarcoma.

Oncogenesis. 2018-2-23

[4]
Integrative genomic and transcriptomic analysis of leiomyosarcoma.

Nat Commun. 2018-1-10

[5]
The Human Cell Atlas.

Elife. 2017-12-5

[6]
Histone deacetylase inhibitors vorinostat and panobinostat induce G1 cell cycle arrest and apoptosis in multidrug resistant sarcoma cell lines.

Oncotarget. 2017-8-24

[7]
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas.

Cell. 2017-11-2

[8]
Death by HDAC Inhibition in Synovial Sarcoma Cells.

Mol Cancer Ther. 2017-9-6

[9]
A pathology atlas of the human cancer transcriptome.

Science. 2017-8-18

[10]
Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells.

Cancer Lett. 2017-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索