Suppr超能文献

利用心率变异性、血氧饱和度和人体测量数据,结合机器学习来预测阻塞性睡眠呼吸暂停的存在及严重程度。

The use of heart rate variability, oxygen saturation, and anthropometric data with machine learning to predict the presence and severity of obstructive sleep apnea.

作者信息

Dos Santos Rafael Rodrigues, Marumo Matheo Bellini, Eckeli Alan Luiz, Salgado Helio Cesar, Silva Luiz Eduardo Virgílio, Tinós Renato, Fazan Rubens

机构信息

Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil.

Department of Computing and Mathematics, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Ribeirão Preto, Brazil.

出版信息

Front Cardiovasc Med. 2025 Mar 14;12:1389402. doi: 10.3389/fcvm.2025.1389402. eCollection 2025.

Abstract

INTRODUCTION

Obstructive sleep apnea (OSA) is a prevalent sleep disorder with a high rate of undiagnosed patients, primarily due to the complexity of its diagnosis made by polysomnography (PSG). Considering the severe comorbidities associated with OSA, especially in the cardiovascular system, the development of early screening tools for this disease is imperative. Heart rate variability (HRV) is a simple and non-invasive approach used as a probe to evaluate cardiac autonomic modulation, with a variety of newly developed indices lacking studies with OSA patients.

OBJECTIVES

We aimed to evaluate numerous HRV indices, derived from linear but mainly nonlinear indices, combined or not with oxygen saturation indices, for detecting the presence and severity of OSA using machine learning models.

METHODS

ECG waveforms were collected from 291 PSG recordings to calculate 34 HRV indices. Minimum oxygen saturation value during sleep (SatMin), the percentage of total sleep time the patient spent with oxygen saturation below 90% (T90), and patient anthropometric data were also considered as inputs to the models. The Apnea-Hypopnea Index (AHI) was used to categorize into severity classes of OSA (normal, mild, moderate, severe) to train multiclass or binary (normal-to-mild and moderate-to-severe) classification models, using the Random Forest (RF) algorithm. Since the OSA severity groups were unbalanced, we used the Synthetic Minority Over-sampling Technique (SMOTE) to oversample the minority classes.

RESULTS

Multiclass models achieved a mean area under the ROC curve (AUROC) of 0.92 and 0.86 in classifying normal individuals and severe OSA patients, respectively, when using all attributes. When the groups were dichotomized into normal-to-mild OSA vs. moderate-to-severe OSA, an AUROC of 0.83 was obtained. As revealed by RF, the importance of features indicates that all feature modalities (HRV, SpO, and anthropometric variables) contribute to the top 10 ranks.

CONCLUSION

The present study demonstrates the feasibility of using classification models to detect the presence and severity of OSA using these indices. Our findings have the potential to contribute to the development of rapid screening tools aimed at assisting individuals affected by this condition, to expedite diagnosis and initiate timely treatment.

摘要

引言

阻塞性睡眠呼吸暂停(OSA)是一种常见的睡眠障碍,未确诊患者比例很高,主要是因为通过多导睡眠图(PSG)进行诊断较为复杂。考虑到与OSA相关的严重合并症,尤其是在心血管系统方面,开发针对该疾病的早期筛查工具势在必行。心率变异性(HRV)是一种简单且无创的方法,用作评估心脏自主神经调节的指标,许多新开发的指标缺乏对OSA患者的研究。

目的

我们旨在评估众多HRV指标,这些指标源自线性指标,但主要是非线性指标,无论是否与血氧饱和度指标相结合,使用机器学习模型来检测OSA的存在和严重程度。

方法

从291份PSG记录中收集心电图波形,以计算34个HRV指标。睡眠期间的最低血氧饱和度值(SatMin)、患者血氧饱和度低于90%的总睡眠时间百分比(T90)以及患者人体测量数据也被视为模型的输入。呼吸暂停低通气指数(AHI)用于将OSA分为严重程度类别(正常、轻度、中度、重度),以使用随机森林(RF)算法训练多类或二元(正常至轻度和中度至重度)分类模型。由于OSA严重程度组不均衡,我们使用合成少数过采样技术(SMOTE)对少数类别进行过采样。

结果

当使用所有属性时,多类模型在对正常个体和重度OSA患者进行分类时,ROC曲线下的平均面积(AUROC)分别为0.92和0.86。当将组分为正常至轻度OSA与中度至重度OSA时,获得的AUROC为0.83。如RF所示,特征的重要性表明所有特征模式(HRV、SpO和人体测量变量)在前10名中都有贡献。

结论

本研究证明了使用分类模型通过这些指标检测OSA的存在和严重程度的可行性。我们的研究结果有可能有助于开发快速筛查工具,旨在帮助受这种疾病影响的个体,加快诊断并及时开始治疗。

相似文献

6
Cardiac autonomic control in the obstructive sleep apnea.阻塞性睡眠呼吸暂停中的心脏自主神经控制
Libyan J Med. 2015 Apr 8;10(1):26989. doi: 10.3402/ljm.v10.26989. eCollection 2015.
9
[Expert consensus on the diagnosis and treatment of obstructive sleep apnea in women].[女性阻塞性睡眠呼吸暂停诊断与治疗专家共识]
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Jun 12;47(6):509-528. doi: 10.3760/cma.j.cn112147-20240206-00072.

本文引用的文献

4
A guide to machine learning for biologists.生物学机器学习指南。
Nat Rev Mol Cell Biol. 2022 Jan;23(1):40-55. doi: 10.1038/s41580-021-00407-0. Epub 2021 Sep 13.
5
The Different Facets of Heart Rate Variability in Obstructive Sleep Apnea.阻塞性睡眠呼吸暂停中心率变异性的不同方面
Front Psychiatry. 2021 Jul 22;12:642333. doi: 10.3389/fpsyt.2021.642333. eCollection 2021.
7
The Entropy Universe.熵宇宙。
Entropy (Basel). 2021 Feb 11;23(2):222. doi: 10.3390/e23020222.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验