Suppr超能文献

DuckCov:基于动态脱靶的共价结合物虚拟筛选协议。

DUckCov: a Dynamic Undocking-Based Virtual Screening Protocol for Covalent Binders.

机构信息

Facultat de Farmàcia and Institut de Biomedicina, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.

出版信息

ChemMedChem. 2019 May 17;14(10):1011-1021. doi: 10.1002/cmdc.201900078. Epub 2019 Mar 8.

Abstract

Thanks to recent guidelines, the design of safe and effective covalent drugs has gained significant interest. Other than targeting non-conserved nucleophilic residues, optimizing the noncovalent binding framework is important to improve potency and selectivity of covalent binders toward the desired target. Significant efforts have been made in extending the computational toolkits to include a covalent mechanism of protein targeting, like in the development of covalent docking methods for binding mode prediction. To highlight the value of the noncovalent complex in the covalent binding process, here we describe a new protocol using tethered and constrained docking in combination with Dynamic Undocking (DUck) as a tool to privilege strong protein binders for the identification of novel covalent inhibitors. At the end of the protocol, dedicated covalent docking methods were used to rank and select the virtual hits based on the predicted binding mode. By validating the method on JAK3 and KRas, we demonstrate how this fast iterative protocol can be applied to explore a wide chemical space and identify potent targeted covalent inhibitors.

摘要

得益于最近的指导方针,安全有效的共价药物设计引起了极大的关注。除了针对非保守亲核残基外,优化非共价结合框架对于提高共价结合物对所需靶标的效力和选择性也很重要。人们已经做出了巨大的努力来扩展计算工具包,以包括针对蛋白质的共价机制,例如开发用于结合模式预测的共价对接方法。为了突出非共价复合物在共价结合过程中的价值,我们在这里描述了一种新的使用系链和约束对接结合动态脱钩(DUck)的方案作为一种工具,用于鉴定新型共价抑制剂的强蛋白结合物。在方案结束时,专门的共价对接方法用于根据预测的结合模式对虚拟命中进行排名和选择。通过在 JAK3 和 KRas 上验证该方法,我们展示了如何应用这种快速迭代方案来探索广泛的化学空间并鉴定有效的靶向共价抑制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a6c/6593427/eaf696aea2d6/CMDC-14-1011-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验