Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, 4 place Jussieu, F-75005, Paris, France.
Phys Chem Chem Phys. 2019 Mar 6;21(10):5416-5423. doi: 10.1039/c9cp00199a.
Transient electrochemical experiments associated with the collisions between hydrothermally synthesized LiCoO2 (LCO) nanoparticles/aggregates of different sizes and a polarized gold ultramicroelectrode (UME) were used as a new additive-free analytical tool applied to Li ion insertion compounds. The size of the LCO nanoparticles/aggregates, ranging from 75 to 450 nm, the diffusion coefficient of the LCO nanoparticles/aggregates in suspension (∼8 × 10-9 cm2 s-1), and the Li ion diffusion coefficient within crystalline LCO nanoparticles (∼1.3 × 10-11 cm2 s-1) were estimated from single collision events. Interestingly, the charge exchanged during each nanoparticle collision was related to the size of the corresponding LCO aggregate, which enables electrochemical sizing distribution measurement displaying evident concordance with optical techniques, including dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM). Studying the nanoparticle collision frequency on the UME surface as a function of the LCO nanoparticle concentration allows estimation of the diffusion coefficient of LCO nanoparticles/aggregates in suspension. Finally, from the current decay observed in chronoamperometry after LCO nanoparticle collision on the polarized UME surface, which corresponds to the LCO oxidation (i.e. the Li+ deinsertion reaction), the Li ion diffusion coefficient within the host crystalline material is estimated. This is a key parameter, which controls the cycle lifetime and charge rate in Li ion battery performance. This new approach thus allows a fine description of the nanoparticle properties, which includes sizing as well as estimation of the Li ion diffusion coefficient within the host crystalline material.
瞬态电化学实验与不同尺寸的水热合成 LiCoO2(LCO)纳米颗粒/聚集体与极化金超微电极(UME)之间的碰撞有关,被用作一种新的无添加剂分析工具,应用于锂离子嵌入化合物。LCO 纳米颗粒/聚集体的尺寸范围从 75 到 450nm,悬浮液中 LCO 纳米颗粒/聚集体的扩散系数(8×10-9cm2 s-1),以及晶体 LCO 纳米颗粒内的 Li 离子扩散系数(1.3×10-11cm2 s-1),是从单个碰撞事件中估计出来的。有趣的是,每个纳米颗粒碰撞期间交换的电荷与相应的 LCO 聚集体的尺寸有关,这使得电化学粒径分布测量与光学技术,包括动态光散射(DLS)和冷冻透射电子显微镜(cryo-TEM)显示出明显的一致性。研究 UME 表面上的纳米颗粒碰撞频率作为 LCO 纳米颗粒浓度的函数,允许估计悬浮液中 LCO 纳米颗粒/聚集体的扩散系数。最后,从极化 UME 表面上 LCO 纳米颗粒碰撞后在计时安培法中观察到的电流衰减,这对应于 LCO 的氧化(即 Li+脱插反应),可以估计主体晶体材料中的 Li 离子扩散系数。这是一个关键参数,控制着锂离子电池性能的循环寿命和充电速率。这种新方法因此可以对纳米颗粒的性质进行精细描述,包括粒径以及主体晶体材料内 Li 离子扩散系数的估计。