Suppr超能文献

利用信息学识别报告病例:电子报告淋病和衣原体感染病例的试点研究结果。

Leveraging Informatics to Identify Reportable Cases: Pilot Findings on Electronic Case Reporting of Chlamydia and Gonorrhea.

机构信息

Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia (Dr Mishra); Task Force for Global Health, Public Health Informatics Institute, Decatur, Georgia (Mr Jellison and Ms Viator); and AllianceChicago, Chicago, Illinois (Messrs Hamilton and Carr and Ms Padilla).

出版信息

J Public Health Manag Pract. 2019 Nov/Dec;25(6):595-597. doi: 10.1097/PHH.0000000000000954.

Abstract

Consensus-based technical guidance for electronic case reporting (eCR) of sexually transmitted infections was implemented within existing health information technologies to automatically detect chlamydia and gonorrhea cases based on diagnosis and laboratory observation codes and build a case report using industry standards. The process was evaluated using 12 420 ambulatory encounters among adolescents and adults 15 years and older seen at 8 Chicago-area community health centers between May 1 and June 30, 2017. We tabulated the frequency of matches between the case detection logic and patient data and compared the eCR identified cases with paper case reports. This study found that eCR increased provider reporting when compared with paper reporting alone. While additional work across stakeholder groups is needed, these early findings suggest that broadly adopted eCR will decrease both provider and public health burden while improving reporting timeliness and data completion to support case investigation.

摘要

基于共识的性传播感染电子病例报告(eCR)技术指南在现有的卫生信息技术中得到实施,以便根据诊断和实验室观察代码自动检测衣原体和淋病病例,并使用行业标准生成病例报告。该流程使用了 2017 年 5 月 1 日至 6 月 30 日期间在芝加哥地区 8 个社区卫生中心就诊的 12420 名青少年和 15 岁及以上成年人的 12420 次门诊就诊数据进行了评估。我们对病例检测逻辑与患者数据之间的匹配频率进行了制表,并将 eCR 确定的病例与纸质病例报告进行了比较。本研究发现,与单独使用纸质报告相比,eCR 增加了提供者的报告。虽然需要跨利益相关者群体开展更多工作,但这些早期发现表明,广泛采用 eCR 将减少提供者和公共卫生负担,同时提高报告及时性和数据完整性,以支持病例调查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验