Suppr超能文献

利用中红外光谱法和区域及大陆尺度模型测定土壤中的碳酸盐。

Carbonate determination in soils by mid-IR spectroscopy with regional and continental scale models.

机构信息

Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America.

Kellogg Soil Survey Laboratory, Natural Resources Conservation Service, Lincoln, Nebraska, United States of America.

出版信息

PLoS One. 2019 Feb 21;14(2):e0210235. doi: 10.1371/journal.pone.0210235. eCollection 2019.

Abstract

A Partial Least Squares (PLS) carbonate (CO3) prediction model was developed for soils throughout the contiguous United States using mid-infrared (MIR) spectroscopy. Excellent performance was achieved over an extensive geographic and chemical diversity of soils. A single model for all soil types performed very well with a root mean square error of prediction (RMSEP) of 12.6 g kg-1 and was further improved if Histosols were excluded (RMSEP 11.1 g kg-1). Exclusion of Histosols was particularly beneficial for accurate prediction of CO3 values when the national model was applied to an independent regional dataset. Little advantage was found in further narrowing the taxonomic breadth of the calibration dataset, but higher precision was obtained by running models for a restricted range of CO3. A model calibrated using only on the independent regional dataset, was unable to accurately predict CO3 content for the more chemically diverse national dataset. Ten absorbance peaks enabling CO3 prediction by mid-infrared (MIR) spectroscopy were identified and evaluated for individual and combined predictive power. A single-band model derived from an absorbance peak centered at 1796 cm-yielded the lowest RMSEP of 13.5 g kg-1 for carbonate prediction compared to other single-band models. This predictive power is attributed to the strength and sharpness of the peak, and an apparent minimal overlap with confounding co-occurring spectral features of other soil components. Drawing from the 10 identified bands, multiple combinations of 3 or 4 peaks were able to predict CO3 content as well as the full-spectrum national models. Soil CO3 is an excellent example of a soil parameter that can be predicted with great effectiveness and generality, and MIR models could replace direct laboratory measurement as a lower cost, high quality alternative.

摘要

采用中红外(MIR)光谱法,为美国各地的土壤开发了一种偏最小二乘(PLS)碳酸盐(CO3)预测模型。在广泛的土壤地理和化学多样性中,取得了出色的性能。对于所有土壤类型,单一模型的表现非常出色,预测均方根误差(RMSEP)为 12.6 g kg-1,如果排除Histosols(RMSEP 为 11.1 g kg-1),则进一步提高。排除Histosols 特别有利于将全国模型应用于独立的区域数据集时,对 CO3 值的准确预测。进一步缩小校准数据集的分类学范围几乎没有优势,但通过运行限制 CO3 范围的模型,可以获得更高的精度。仅使用独立区域数据集校准的模型无法准确预测化学多样性更高的全国数据集的 CO3 含量。确定了十个可通过中红外(MIR)光谱法预测 CO3 的吸光度峰,并评估了其各自和组合的预测能力。与其他单波段模型相比,源自 1796 cm 处吸光度峰的单波段模型的 CO3 预测 RMSEP 最低,为 13.5 g kg-1。这种预测能力归因于峰的强度和锐度,以及与其他土壤成分的共存光谱特征明显最小的重叠。从 10 个鉴定的波段中,可以组合使用 3 个或 4 个波段来预测 CO3 含量以及全谱国家模型。土壤 CO3 是一个极好的例子,说明可以非常有效地和普遍地预测土壤参数,并且 MIR 模型可以替代直接实验室测量,作为一种低成本,高质量的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c4/6383893/95cfa0f74711/pone.0210235.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验