Suppr超能文献

现代加速树木生长中的无类似物偏差去除导致中世纪干旱加剧。

Removing the no-analogue bias in modern accelerated tree growth leads to stronger medieval drought.

机构信息

Institute of Botany and Landcape Ecology, University of Greifswald, 17487, Greifswald, Germany.

German Archaeological Institute DAI, 14195, Berlin, Germany.

出版信息

Sci Rep. 2019 Feb 21;9(1):2509. doi: 10.1038/s41598-019-39040-5.

Abstract

In many parts of the world, especially in the temperate regions of Europe and North-America, accelerated tree growth rates have been observed over the last decades. This widespread phenomenon is presumably caused by a combination of factors like atmospheric fertilization or changes in forest structure and/or management. If not properly acknowledged in the calibration of tree-ring based climate reconstructions, considerable bias concerning amplitudes and trends of reconstructed climatic parameters might emerge or low frequency information is lost. Here we present a simple but effective, data-driven approach to remove the recent non-climatic growth increase in tree-ring data. Accounting for the no-analogue calibration problem, a new hydroclimatic reconstruction for northern-central Europe revealed considerably drier conditions during the medieval climate anomaly (MCA) compared with standard reconstruction methods and other existing reconstructions. This demonstrates the necessity to account for fertilization effects in modern tree-ring data from affected regions before calibrating reconstruction models, to avoid biased results.

摘要

在过去几十年中,世界上许多地区,特别是欧洲和北美温带地区,都观察到树木生长速度加快的现象。这种广泛存在的现象可能是多种因素共同作用的结果,如大气施肥或森林结构和/或管理的变化。如果在基于树木年轮的气候重建的校准中没有正确认识到这一点,那么重建气候参数的幅度和趋势可能会出现相当大的偏差,或者低频信息会丢失。在这里,我们提出了一种简单而有效的、基于数据的方法,可以去除树木年轮数据中近期的非气候生长增加。考虑到无类似校准问题,与标准重建方法和其他现有重建方法相比,针对北欧中部的新水文气候重建表明,在中世纪气候异常期间(MCA)的条件更为干燥。这表明,在对受影响地区的现代树木年轮数据进行重建模型校准之前,必须考虑施肥效应对其的影响,以避免产生有偏差的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552e/6385214/359af964d983/41598_2019_39040_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验