Suppr超能文献

在结合偶联折叠的无规卷曲蛋白中,位置、无序和盐依赖性扩散。

Position-, disorder-, and salt-dependent diffusion in binding-coupled-folding of intrinsically disordered proteins.

机构信息

Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.

出版信息

Phys Chem Chem Phys. 2019 Mar 6;21(10):5634-5645. doi: 10.1039/c8cp06803h.

Abstract

Successful extensions of protein-folding energy landscape theory to intrinsically disordered proteins' (IDPs') binding-coupled-folding transition can enormously simplify this biomolecular process into diffusion along a limited number of reaction coordinates, and the dynamics subsequently is described by Kramers' rate theory. As the critical pre-factor, the diffusion coefficient D has direct implications on the binding kinetics. Here, we employ a structure-based model (SBM) to calculate D in the binding-folding of an IDP prototype. We identify a strong position-dependent D during binding by applying a reaction coordinate that directly measures the fluctuations in a Cartesian configuration space. Using the malleability of the SBM, we modulate the degree of conformational disorder in an isolated IDP and determine complex effects of intrinsic disorder on D varying for different binding stages. Here, D tends to increase with disorder during initial binding but shows a non-monotonic relationship with disorder in terms of a decrease-followed-by-increase in D during the late binding stage. The salt concentration, which correlates with electrostatic interactions via Debye-Hückel theory in our SBM, also modulates D in a stepwise way. The speeding up of diffusion by electrostatic interactions is observed during the formation of the encounter complex at the beginning of binding, while the last diffusive binding dynamics is hindered by non-native salt bridges. Because D describes the diffusive speed locally, which implicitly reflects the roughness of the energy landscape, we are eventually able to portray the binding energy landscape, including that from IDPs' binding, then to binding with partial folding, and finally to rigid docking, as well as that under different environmental salt concentrations. Our theoretical results provide key mechanistic insights into IDPs' binding-folding, which is internally conformation- and externally salt-controlled with respect to diffusion.

摘要

成功地将蛋白质折叠能景理论扩展到固有无序蛋白质(IDP)的结合偶联折叠转变,可以将这个生物分子过程极大地简化为沿着有限数量的反应坐标扩散,随后动力学由克拉默斯速率理论描述。作为关键的前置因子,扩散系数 D 直接影响结合动力学。在这里,我们使用基于结构的模型(SBM)来计算 IDP 原型结合折叠中的 D。我们通过应用直接测量笛卡尔构象空间波动的反应坐标,确定了结合过程中强烈的位置相关 D。利用 SBM 的可变形性,我们在孤立的 IDP 中调节构象无序的程度,并确定固有无序对不同结合阶段 D 的复杂影响。在这里,D 在初始结合过程中随着无序程度的增加而增加,但在结合后期,D 与无序程度呈非单调关系,先减少后增加。盐浓度通过我们的 SBM 中的德拜-休克尔理论与静电相互作用相关,以逐步的方式调节 D。在结合开始时形成遭遇复合物期间,静电相互作用加速了扩散,而最后扩散结合动力学则受到非天然盐桥的阻碍。由于 D 描述了局部的扩散速度,隐含地反映了能景的粗糙度,我们最终能够描绘结合能景,包括 IDP 的结合、部分折叠的结合和刚性对接的结合,以及在不同环境盐浓度下的结合。我们的理论结果为 IDP 结合折叠提供了关键的机制见解,结合折叠过程是内部构象和外部盐控制的扩散过程。

相似文献

2
Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins.
PLoS Comput Biol. 2013;9(11):e1003363. doi: 10.1371/journal.pcbi.1003363. Epub 2013 Nov 21.
3
Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding.
Protein Sci. 2019 Nov;28(11):1952-1965. doi: 10.1002/pro.3718. Epub 2019 Sep 4.
4
Diffusion-limited association of disordered protein by non-native electrostatic interactions.
Nat Commun. 2018 Nov 9;9(1):4707. doi: 10.1038/s41467-018-06866-y.
5
A structurally heterogeneous transition state underlies coupled binding and folding of disordered proteins.
J Biol Chem. 2019 Jan 25;294(4):1230-1239. doi: 10.1074/jbc.RA118.005854. Epub 2018 Dec 4.
7
Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1.
PLoS Comput Biol. 2017 Apr 3;13(4):e1005468. doi: 10.1371/journal.pcbi.1005468. eCollection 2017 Apr.
8
The binding mechanisms of intrinsically disordered proteins.
Phys Chem Chem Phys. 2014 Apr 14;16(14):6323-31. doi: 10.1039/c3cp54226b. Epub 2013 Dec 6.
9
Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins.
J Biol Chem. 2020 Dec 18;295(51):17698-17712. doi: 10.1074/jbc.RA120.015645.

引用本文的文献

2
New insights into disordered proteins and regions according to the FOD-M model.
PLoS One. 2022 Oct 10;17(10):e0275300. doi: 10.1371/journal.pone.0275300. eCollection 2022.
3
Modeling the Dynamics of Protein-Protein Interfaces, How and Why?
Molecules. 2022 Mar 11;27(6):1841. doi: 10.3390/molecules27061841.
4
Investigating the Conformational Dynamics of a Y-Family DNA Polymerase during Its Folding and Binding to DNA and a Nucleotide.
JACS Au. 2021 Dec 16;2(2):341-356. doi: 10.1021/jacsau.1c00368. eCollection 2022 Feb 28.
5
Perspectives on the landscape and flux theory for describing emergent behaviors of the biological systems.
J Biol Phys. 2022 Mar;48(1):1-36. doi: 10.1007/s10867-021-09586-5. Epub 2021 Nov 25.
7
Assessing the Role of Calmodulin's Linker Flexibility in Target Binding.
Int J Mol Sci. 2021 May 8;22(9):4990. doi: 10.3390/ijms22094990.
9
Conformational state switching and pathways of chromosome dynamics in cell cycle.
Appl Phys Rev. 2020 Sep;7(3):031403. doi: 10.1063/5.0007316.

本文引用的文献

1
Energy Landscape of the Designed Protein Top7.
J Phys Chem B. 2018 Dec 27;122(51):12282-12291. doi: 10.1021/acs.jpcb.8b08499. Epub 2018 Dec 12.
2
Probing Position-Dependent Diffusion in Folding Reactions Using Single-Molecule Force Spectroscopy.
Biophys J. 2018 Apr 10;114(7):1657-1666. doi: 10.1016/j.bpj.2018.02.026.
3
pKID Binds to KIX via an Unstructured Transition State with Nonnative Interactions.
Biophys J. 2017 Dec 19;113(12):2713-2722. doi: 10.1016/j.bpj.2017.10.016.
4
Roles of conformational disorder and downhill folding in modulating protein-DNA recognition.
Phys Chem Chem Phys. 2017 Nov 1;19(42):28527-28539. doi: 10.1039/c7cp04380e.
5
Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure.
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9882-9887. doi: 10.1073/pnas.1705105114. Epub 2017 Aug 28.
6
Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1833-E1839. doi: 10.1073/pnas.1616672114. Epub 2017 Feb 21.
7
Intrinsic disorder accelerates dissociation rather than association.
Proteins. 2016 Aug;84(8):1124-33. doi: 10.1002/prot.25057. Epub 2016 May 18.
8
Reduction of All-Atom Protein Folding Dynamics to One-Dimensional Diffusion.
J Phys Chem B. 2015 Dec 10;119(49):15247-55. doi: 10.1021/acs.jpcb.5b09741. Epub 2015 Nov 25.
9
Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.
Cell. 2015 Oct 22;163(3):734-45. doi: 10.1016/j.cell.2015.09.047. Epub 2015 Oct 8.
10
Structural origin of slow diffusion in protein folding.
Science. 2015 Sep 25;349(6255):1504-10. doi: 10.1126/science.aab1369.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验