Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India.
Department of Medical Physics, Bharathiar University, Coimbatore, Tamil Nadu, India.
J Biomol Struct Dyn. 2020 Feb;38(2):317-339. doi: 10.1080/07391102.2019.1574239. Epub 2019 Feb 22.
Human telomerase referred as 'terminal transferase' is a nucleoprotein enzyme which inhibits the disintegration of telomere length and act as a drug target for the anticancer therapy. The tandem repeating structure of telomere sequence forms the guanine-rich quadruplex structures that stabilize stacked tetrads. In our present work, we have investigated the interaction of quercetin with DNA tetrads using DFT. Geometrical analysis revealed that the influence of quercetin drug induces the structural changes into the DNA tetrads. Among DNA tetrads, the quercetin stacked with GCGC tetrad has the highest interaction energy of -88.08 kcal/mol. The binding mode and the structural stability are verified by the absorption spectroscopy method. The longer wavelength was found at 380 nm and it exhibits bathochromic shift. The findings help us to understand the binding nature of quercetin drug with DNA tetrads and it also inhibits the telomerase activity. Further, the quercetin drug interacted with G-quadruplex DNA by using molecular dynamics (MD) simulation studies for 100 ns simulation at different temperatures and different pH levels ( = 298 K, 320 K and pH = 7.4, 5.4). The structural stability of the quercetin with G-quadruplex structure is confirmed by RMSD. For the acidic condition (pH = 5.4), the binding affinity is higher toward G-quadruplex DNA, this result resembles that the quercetin drug is well interacted with G-quadruplex DNA at acidic condition (pH = 7.4) than the neutral condition. The obtained results show that quercetin drug stabilizes the G-quadruplex DNA, which regulates telomerase enzyme and it potentially acts as a novel anti-cancer agent.Communicated by Ramaswamy H. Sarma.
人类端粒酶被称为“末端转移酶”,是一种核蛋白酶,可抑制端粒长度的降解,并作为抗癌治疗的药物靶点。端粒序列的串联重复结构形成富含鸟嘌呤的四联体结构,稳定堆叠的四联体。在我们目前的工作中,我们使用 DFT 研究了槲皮素与 DNA 四联体的相互作用。几何分析表明,槲皮素药物的影响诱导了 DNA 四联体的结构变化。在 DNA 四联体中,与 GCGC 四联体堆叠的槲皮素有最高的相互作用能-88.08 kcal/mol。结合模式和结构稳定性通过吸收光谱法得到验证。在 380nm 处发现了较长的波长,并且表现出红移。这些发现有助于我们了解槲皮素药物与 DNA 四联体的结合性质,并且还抑制端粒酶活性。此外,通过在不同温度和不同 pH 值(= 298 K、320 K 和 pH = 7.4、5.4)下进行 100ns 的分子动力学(MD)模拟研究,槲皮素药物与 G-四链体 DNA 相互作用。通过 RMSD 确认了槲皮素与 G-四链体结构的结构稳定性。对于酸性条件(pH = 5.4),对 G-四链体 DNA 的结合亲和力更高,这一结果表明,在酸性条件(pH = 7.4)下,槲皮素药物与 G-四链体 DNA 的相互作用比中性条件更强。结果表明,槲皮素药物稳定了 G-四链体 DNA,从而调节端粒酶酶,它可能作为一种新型抗癌药物。由 Ramaswamy H. Sarma 传达。