McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712-1589 , United States.
Department of Chemistry , Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pune 411008 , India.
Nano Lett. 2019 Mar 13;19(3):2012-2019. doi: 10.1021/acs.nanolett.9b00079. Epub 2019 Feb 22.
Degenerately doped semiconductor nanocrystals (NCs) exhibit strong light-matter interactions due to localized surface plasmon resonance (LSPR) in the near- to mid-infrared region. Besides being readily tuned through dopant concentration introduced during synthesis, this LSPR can also be dynamically modulated by applying an external electrochemical potential. This characteristic makes these materials candidates for electrochromic window applications. Here, using prototypical doped indium oxide NCs as a model system, we find that the extent of electrochemical modulation of LSPR frequency is governed by the depletion width and the extent of inter-NC LSPR coupling, which are indirectly controlled by the dopant density, size, and packing density of the NCs. The depletion layer is a near-surface region with a sharply reduced free carrier population that occurs whenever the surface potential lies below the Fermi level. Changes in the depletion width under applied bias substantially control the spectral modulation of the LSPR of individual NCs and also modify the inter-NC LSPR coupling, which additionally modulates the LSPR absorption on the NC film scale. Here, we show that both of these effects must be considered primary factors in determining the extent of LSPR frequency modulation and that the dominant factor depends on NC size. For a constant doping concentration, depletion effects govern LSPR modulation for smaller NCs, while LSPR coupling is prevalent in larger NCs. Consequently, as the size of the NCs is increased while keeping the doping concentration constant, we observe a reversal in the sign of the LSPR frequency modulation from positive to negative.
退化掺杂半导体纳米晶体(NCs)由于在近至中红外区域的局域表面等离子体共振(LSPR)而表现出强烈的光物质相互作用。除了可以通过在合成过程中引入掺杂剂浓度来轻易地进行调整之外,这种 LSPR 还可以通过施加外部电化学势来动态地进行调制。这种特性使得这些材料成为电致变色窗应用的候选材料。在这里,我们使用典型的掺杂氧化铟 NCs 作为模型系统,发现 LSPR 频率的电化学调制程度受耗尽宽度和 NC 之间 LSPR 耦合的程度的控制,而这些又间接受到掺杂剂密度、NC 的大小和堆积密度的控制。耗尽层是一个自由载流子密度急剧降低的近表面区域,当表面势低于费米能级时就会发生这种情况。在施加偏压下耗尽宽度的变化会极大地控制单个 NC 的 LSPR 的光谱调制,并且还会改变 NC 之间的 LSPR 耦合,这也会在 NC 膜尺度上改变 LSPR 吸收。在这里,我们表明这两个因素都必须被认为是决定 LSPR 频率调制程度的主要因素,并且主导因素取决于 NC 的大小。对于恒定的掺杂浓度,对于较小的 NCs,耗尽效应会控制 LSPR 调制,而对于较大的 NCs,LSPR 耦合则更为普遍。因此,随着 NC 尺寸的增加而保持掺杂浓度不变,我们观察到 LSPR 频率调制的符号从正变为负的反转。