Am Nat. 2019 Mar;193(3):424-435. doi: 10.1086/701667. Epub 2019 Jan 17.
Understanding the causes of larval dispersal is a major goal of marine ecology, yet most research focuses on proximate causes. Here we ask how ultimate, evolutionary causes affect dispersal. Building on Hamilton and May's classic 1977 article "Dispersal in Stable Habitats," we develop analytic and simulation models for the evolution of dispersal kernels in spatially structured habitats. First, we investigate dispersal in a world without edges and find that most offspring disperse as far as possible, opposite the pattern of empirical data. Adding edges to our model world leads to nearly all offspring dispersing short distances, again a mismatch with empirical data. Adding resource heterogeneity improves our results: most offspring disperse short distances with some dispersing longer distances. Finally, we simulate dispersal evolution in a real seascape in Belize and find that the simulated dispersal kernel and an empirical dispersal kernel from that seascape both have the same shape, with a high level of short-distance dispersal and a low level of long-distance dispersal. The novel contributions of this work are to provide a spatially explicit analytic extension of Hamilton and May's 1977 work, to demonstrate that our spatially explicit simulations and analytic models provide equivalent results, and to use simulation approaches to investigate the evolution of dispersal kernel shape in spatially complex habitats. Our model could be modified in various ways to investigate dispersal evolution in other species and seascapes, providing new insights into patterns of marine larval dispersal.
理解幼虫扩散的原因是海洋生态学的主要目标,但大多数研究都集中在近因上。在这里,我们探讨终极的、进化的原因如何影响扩散。在 Hamilton 和 May 1977 年经典文章“稳定栖息地中的扩散”的基础上,我们为空间结构栖息地中的扩散核的进化建立了分析和模拟模型。首先,我们在没有边缘的世界中研究扩散,发现大多数后代尽可能远地扩散,与经验数据的模式相反。在我们的模型世界中添加边缘会导致几乎所有的后代都进行短距离扩散,这再次与经验数据不匹配。添加资源异质性可以改善我们的结果:大多数后代进行短距离扩散,而有些后代进行长距离扩散。最后,我们在伯利兹的真实海域中模拟扩散进化,发现模拟的扩散核和该海域的一个经验扩散核具有相同的形状,具有高水平的短距离扩散和低水平的长距离扩散。这项工作的新颖贡献在于提供了 Hamilton 和 May 1977 年工作的空间显式分析扩展,证明了我们的空间显式模拟和分析模型提供了等效的结果,并使用模拟方法研究了空间复杂栖息地中扩散核形状的进化。我们的模型可以以各种方式进行修改,以研究其他物种和海域中的扩散进化,为海洋幼虫扩散模式提供新的见解。