Suppr超能文献

利用自电容进行无线功率传输。

Exploiting Self-Capacitances for Wireless Power Transfer.

出版信息

IEEE Trans Biomed Circuits Syst. 2019 Apr;13(2):425-434. doi: 10.1109/TBCAS.2019.2900433. Epub 2019 Feb 20.

Abstract

Conventional approaches for wireless power transfer rely on the mutual coupling (near-field or far-field) between the transmitter and receiver transducers. As a result, the power-transfer efficiency of these approaches scales non-linearly with the cross-sectional area of the transducers and with the relative distance and respective alignment between the transducers. In this paper, we show that when the operational power-budget requirements are in the order of microwatts, a self-capacitance (SC)-based power delivery has significant advantages in terms of the power transfer-efficiency, receiver form-factor, and system scalability when compared to other modes of wireless power transfer (WPT) methods. We present a simple and a tractable equivalent circuit model that can be used to study the effect of different parameters on the SC-based WPT. In this paper, we have experimentally verified the validity of the circuit using a cadaver mouse model. We also demonstrate the feasibility of a hybrid telemetry system where the microwatts of power, which can be harvested from SC-based WPT approach, is used for back-scattering a radio-frequency (RF) signal and is used for remote sensing of in vivo physiological parameters such as temperature. The functionality of the hybrid system has also been verified using a cadaver mouse model housed in a cage that was retrofitted with 915 MHz RF back-scattering antennas. We believe that the proposed remote power-delivery and hybrid telemetry approach would be useful in remote activation of wearable devices and in the design of energy-efficient animal cages used for long-term monitoring applications.

摘要

传统的无线功率传输方法依赖于发射器和接收器换能器之间的互耦合(近场或远场)。因此,这些方法的功率传输效率与换能器的横截面积以及换能器之间的相对距离和相对对准非线性相关。在本文中,我们表明,当操作功率预算要求在微瓦特量级时,与其他无线功率传输 (WPT) 方法相比,基于自电容 (SC) 的功率传输在功率传输效率、接收器外形尺寸和系统可扩展性方面具有显著优势。我们提出了一种简单且易于处理的等效电路模型,可用于研究不同参数对基于 SC 的 WPT 的影响。在本文中,我们使用尸体老鼠模型实验验证了电路的有效性。我们还展示了混合遥测系统的可行性,其中可以从基于 SC 的 WPT 方法中收集的微瓦功率用于反向散射射频 (RF) 信号,并用于远程感应体内生理参数,如温度。使用安装有 915 MHz RF 反向散射天线的笼子改装的尸体老鼠模型也验证了混合系统的功能。我们相信,所提出的远程功率传输和混合遥测方法将有助于远程激活可穿戴设备,并设计用于长期监测应用的节能动物笼。

相似文献

1
Exploiting Self-Capacitances for Wireless Power Transfer.
IEEE Trans Biomed Circuits Syst. 2019 Apr;13(2):425-434. doi: 10.1109/TBCAS.2019.2900433. Epub 2019 Feb 20.
2
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Sensors (Basel). 2017 Jun 11;17(6):1358. doi: 10.3390/s17061358.
3
4
Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
IEEE Trans Biomed Eng. 2017 Apr;64(4):775-785. doi: 10.1109/TBME.2016.2576469. Epub 2016 Jun 7.
5
Seamless Capacitive Body Channel Wireless Power Transmission Toward Freely Moving Multiple Animals in an Animal Cage.
IEEE Trans Biomed Circuits Syst. 2022 Aug;16(4):714-725. doi: 10.1109/TBCAS.2022.3199455. Epub 2022 Oct 12.
6
A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
Biomed Microdevices. 2013 Dec;15(6):973-83. doi: 10.1007/s10544-013-9789-1.
7
Wireless Power Transfer Techniques for Implantable Medical Devices: A Review.
Sensors (Basel). 2020 Jun 19;20(12):3487. doi: 10.3390/s20123487.
9
A modified magnetic resonance wireless power transfer system for capsule endoscopy.
Electromagn Biol Med. 2019;38(2):158-167. doi: 10.1080/15368378.2019.1591440. Epub 2019 Mar 15.
10
Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
Sensors (Basel). 2016 Mar 18;16(3):393. doi: 10.3390/s16030393.

引用本文的文献

1
A Low-Power Impedance-to-Frequency Converter for Frequency-Multiplexed Wearable Sensors.
IEEE Trans Biomed Circuits Syst. 2024 Aug;18(4):885-895. doi: 10.1109/TBCAS.2024.3362329. Epub 2024 Aug 21.

本文引用的文献

1
Multiaccess In Vivo Biotelemetry Using Sonomicrometry and M-Scan Ultrasound Imaging.
IEEE Trans Biomed Eng. 2018 Jan;65(1):149-158. doi: 10.1109/TBME.2017.2697998. Epub 2017 Apr 25.
2
Investigation and Modeling of Capacitive Human Body Communication.
IEEE Trans Biomed Circuits Syst. 2017 Apr;11(2):474-482. doi: 10.1109/TBCAS.2016.2634121. Epub 2017 Mar 16.
3
Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust.
Neuron. 2016 Aug 3;91(3):529-39. doi: 10.1016/j.neuron.2016.06.034.
4
Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.
IEEE Trans Biomed Eng. 2017 Feb;64(2):452-462. doi: 10.1109/TBME.2016.2560881. Epub 2016 Apr 29.
6
Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.
IEEE Trans Biomed Circuits Syst. 2016 Apr;10(2):404-11. doi: 10.1109/TBCAS.2015.2421823. Epub 2015 Jun 1.
7
Enabling wireless powering and telemetry for peripheral nerve implants.
IEEE J Biomed Health Inform. 2015 May;19(3):958-70. doi: 10.1109/JBHI.2015.2424985. Epub 2015 Apr 21.
8
Fully Implantable Deep Brain Stimulation System with Wireless Power Transmission for Long-term Use in Rodent Models of Parkinson's Disease.
J Korean Neurosurg Soc. 2015 Mar;57(3):152-8. doi: 10.3340/jkns.2015.57.3.152. Epub 2015 Mar 20.
9
Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.
IEEE Trans Biomed Circuits Syst. 2016 Feb;10(1):125-37. doi: 10.1109/TBCAS.2014.2370794. Epub 2015 Jan 20.
10
EnerCage: a smart experimental arena with scalable architecture for behavioral experiments.
IEEE Trans Biomed Eng. 2014 Jan;61(1):139-48. doi: 10.1109/TBME.2013.2278180. Epub 2013 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验