Suppr超能文献

Edge-Semantic Learning Strategy for Layout Estimation in Indoor Environment.

作者信息

Zhang Weidong, Zhang Wei, Gu Jason

出版信息

IEEE Trans Cybern. 2020 Jun;50(6):2730-2739. doi: 10.1109/TCYB.2019.2895837. Epub 2019 Feb 21.

Abstract

Visual cognition of the indoor environment can benefit from the spatial layout estimation, which is to represent an indoor scene with a 2-D box on a monocular image. In this paper, we propose to fully exploit the edge and semantic information of a room image for layout estimation. More specifically, we present an encoder-decoder network with shared encoder and two separate decoders, which are composed of multiple deconvolution (transposed convolution) layers, to jointly learn the edge maps and semantic labels of a room image. We combine these two network predictions in a scoring function to evaluate the quality of the layouts, which are generated by ray sampling and from a predefined layout pool. Guided by the scoring function, we apply a novel refinement strategy to further optimize the layout hypotheses. Experimental results show that the proposed network can yield accurate estimates of edge maps and semantic labels. By fully utilizing the two different types of labels, the proposed method achieves the state-of-the-art layout estimation performance on the benchmark datasets.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验