Suppr超能文献

平板太阳能集热器性能的氧化铝纳米流体:实验特性和效率测试。

Flat plate solar collector performance using alumina nanofluids: Experimental characterization and efficiency tests.

机构信息

Departamento de Ingeniería Mecánica y Construcción, Universitat Jaume I, Castellón de la Plana, Spain.

出版信息

PLoS One. 2019 Feb 22;14(2):e0212260. doi: 10.1371/journal.pone.0212260. eCollection 2019.

Abstract

Solar energy has become an important renewable energy source for reducing the use of fossil fuels and to mitigate global warming, for which solar collectors constitute a technology that is to be promoted. The use of nanofluids can increase the efficiency of solar into thermal energy conversion in solar collectors. Experimental values for the specific heat, thermal conductivity and viscosity of alumina/water nanofluids are needed to evaluate the influence of the solid content (from 0.25 to 5 v%) and the flow rate on the Reynolds, Nusselt and the heat transfer coefficient. In the laminar flow regime, thermal conductivity enhancement over specific heat decrement is key parameter, and a 2.34% increase in the heat transfer coefficient is theoretically obtained for 1 v% alumina nanofluid. To corroborate the results, experimental tests were run in a flat plate solar collector. A reduction in efficiency from 47% to 41.5% and a decrease in the heat removal factor were obtained using the nanofluid due to the formation of a nanoparticle deposition layer adding an addition thermal resistance to heat transfer. Nanofluids are recommended only if the nanoparticle concentration is high enough to enhance thermal conductivity, but no so high so as to avoid wall deposition.

摘要

太阳能已成为减少化石燃料使用和缓解全球变暖的重要可再生能源,太阳能集热器是一项需要推广的技术。纳米流体的使用可以提高太阳能集热器中太阳能向热能的转换效率。为了评估固体含量(0.25 至 5 体积%)和流速对雷诺数、努塞尔数和传热系数的影响,需要对氧化铝/水纳米流体的比热容、热导率和粘度进行实验测量。在层流区,热导率的增强超过比热容的降低是关键参数,对于 1 体积%的氧化铝纳米流体,理论上可获得 2.34%的传热系数的提高。为了验证结果,在平板太阳能集热器中进行了实验测试。由于纳米颗粒沉积层的形成增加了传热的热阻,因此使用纳米流体会导致效率从 47%降低到 41.5%,热去除因子降低。只有当纳米颗粒浓度足够高以增强热导率但又不会高到避免壁面沉积时,才推荐使用纳米流体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/6386257/aa6c54f25dcf/pone.0212260.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验